Оборудование для гомогенизации молока. Устройство, принцип действия и назначение гомогенизаторов Насос высокого давления

Гомогенизатор предназначен: для многокомпонентной гомогенизации и диспергации нерастворимых (несмешиваемых) сред (которым недопустим перегрев), с целью получения высокооднородных нерасслаивающихся эмульсий и суспензий в пищевой, косметической, фармацевтической, химической и других промышленностях. По многим параметрам превосходят лучшие зарубежные образцы гомогенизаторов и не имеют российских аналогов.

Принцип работы гомогенизатора. Перекачиваемая гомогенизатором среда подводится к всасывающему патрубку и отводится из напорного патрубка под воздействием подпирающего давления крупнозернистые частицы и смеси, подлежащие гомогенизации, попадают на крыльчатку агрегата, затем, получив ускорение, попадают на гомогенизирующий узел. В гомогенизирующем узле происходит их раздробление между вращающимся и стационарным калибровочными цилиндрическими ножами ротора и статора. Вращающийся и стационарный калибровочные ножи исполнены в виде колец с отверстиями. Попадающие на гомогенизирующий узел частицы (например, жировые шарики) выдавливаются крыльчаткой под воздействием давления, созданного центробежной силой, и проходят через отверстия. Так как частота вращения крыльчатки и одного из колец 3000 об/мин. (либо регулированная), происходит постепенное срезание (раздробление) подвижной частью кольцевого ножа (каждым отверстием вращающейся части) жировых шариков по мере их продвижения.

Преимущества.

  • Все части гомогенизатора, контактирующие с продуктом, изготовлены из
  • высококачественной пищевой нержавеющей стали AISI 304, AISI 316
  • Установлено торцевое уплотнение, имеющее увеличенный ресурс и
  • исключающее потери продукта.
  • Гарантированная работа при более высоких, чем существующие аналоги
  • температурных режимах (до 115°С).
  • Отлично работает в кислото- и -щелочесодержащих средах.
  • Возможны варианты исполнения с защитой от сухого включения и с
  • взрывозащищенным двигателем.
  • Возможность исполнения гомогенизатора, с "рубашкой" охлаждения (нагрева).
  • Возможна плавная регулировка степени гомогенизации и производительности.
  • Имеет возможность подключения к однофазной или трехфазной сети.

Выгода. Воспользовавшись преимуществами выпускаемых нами гомогенизаторов:

Вы сможете:

  • Производить продукт стабильно высокого качества.
  • Достичь высокой степени диспергации.
  • Добиться долговременной сохранности заданной структуры продукта.
  • Применять любые современные технологии.
  • Конструировать любые технологические линии, совмещая с дополнительным оборудованием других производителей.
  • Высокое качество, стойкость структуры и срок хранения продукта во многом зависят от величины диспергации частиц.
  • Минимальной величины частицы можно достигнуть только на современных гомогенизаторах.


Гомогенизатор с рубашкой охлаждения (нагрева).

Предназначен для гомогенизации сред, которым недопустимо перегревание. В рубашку подается охлаждающая жидкость, которая циркулируя охлаждает слой, соприкасающийся с продуктом. Нагрев рубашки используется при гомогенизации сред, которые застывают (либо становятся более вязкими) уже при комнатной температуре. (шоколад, глазурь, крем, паштет и т.д.). Также для тех сред, в которых характерен рост (гибель) бактерий при повышении (понижении) температуры и наоборот.

Область применения гомогенизаторов

Гомогенизатор для производства молочных продуктов

сливочное масло, молоко, сливки, сметана, йогурт, творог, кефир, сгущенное молоко, сыр, мороженое, восстановление сухого молока, молочная смесь, маргарин, майонез, лёгкое и комбинированное масло, молочные продукты со взбитой структурой

Линия производства сгущеного молока

Линия производства молочных консервов

Гомогенизатор для производства масложировых продуктов

маргарин, майонез, лёгкое и комбинированное масло

Линия производства масла и маргарина

Пищевые насосы в линии по производству майонеза

Установка для производства майонеза

Линия производства молочного жира

Гомогенизатор для производства кондитерских изделий

крем, начинка, шоколадная глазурь, шоколадное масло, шоколадноореховая паста, сироп

Пищевые насосы в линиях по производству шоколадной глазури

Гомогенизатор для производства плодоовощной подукции

джемы, повидло, конфитюры, пюре, пасты, кетчупы, соусы, горчица, томатная паста, томатный сок, концентраты, крем, желе

Линия приготовления фруктовых консервов, томатной пасты, соусов и кетчупов.

Линия для приготовления различных соусов с кусочками овощей (кетчупов, джемов, конфитюров и повидла)

Линия производства рассола

Линия призводства томатной пасты

Линия производства повидла, джема, кофитюра из плодов фруктов

Гомогенизатор для производства мясных продуктов

мясные и печёночные паштеты, различные пасты и смеси, эмульсии для сосисок и колбас, блюда из мяса и птицы

Гомогенизатор для производства косметической продукции

Для производства парфюмерии

крем, шампунь, бальзам, гель, мазь, паста, молочко, лосьон

Линия для производства косметики, косметических средств.

Линии для производства косметических кремов

Установка для получения гомогенных косметических продуктов.

Гомогенизатор для производства фармацевтической продукции

мазь, эмульсии, смеси, вязкие компоненты, растворы

Линия для производства фармацевтических средств

Линия для приготовления стерильной мази (крема).

Линия (установка) гидродинамической экстракции из растительного сырья

Гомогенизатор для производства продуктов бытовой химии

клей, моющие средства, бытовая химия

Линия производства средств для мытья посуды

Линия по производству синтетических моющих средств (паст)

Гомогенизатор для производства лакокрасочных материалов

краски, красители, лаки, покрытия,

Линия приготовления водных красок

Гомогенизатор для производства химической продукции и нефтепереработки

химические продукты, агрессивные эмульсии и суспензии, технические растворы, технические масла, смазка, топливо

Линия производства химических средств

Установка диспергирования углерода

Гомогенизатор для производства пиво-безалкогольной продукции

Линия купажирования.

Линия по производству соков методом восстановления

Технические характеристики гомогенизатора

Модель гомогенизатора Одноступенчатые, без рубашки

P 3

P 5.5

P 7.5

P 11

P 15

P 30
Одноступенчатые, с рубашкой

P 3P

P 5.5P

P 7.5P

P 11P

P 15P

P 30P
Двухступенчатые, без рубашки

P 3-2

P 5.5-2

P 7.5-2

P 11-2

P 15-2

P 30-2
Двухступенчатые, с рубашкой

P 3-2P

P 5.5-2P

P 7.5-2P

P 11-2P

P 15-2P

P 30-2P
Четырехступенчатые
- - -
P 11M

P 15M

P 30M
Производительность, м3/ч 2 - 10 2 - 10 2 - 12 10 - 15
Число оборотов двигателя
Давление на входе, кг/см2
Мощность электродвигателя, кВт 3 5,5 7,5 11 15 30
Температура, °С min - max
Уровень звука, дБ
Кинематическая вязкость, не более, сСт
(без насоса - самотек)
Вес, кг 42 70 85 109 130 157

Сема устройства гомогенизатора

Погружной гомогенизатор ПНГ (диспергатор).


Назначение. Погружной гомогенизатор ПНГ предназначен для гомогенизации жидких и вязких продуктов в пищевой, косметической и химической промышленности, для приготовления, майонезов, мясных, фруктовых, овощных паст, пюре, сиропов, также может использоваться для приготовления водоэмульсионных красок и других аналогичных сред.

Устройство. Погружной гомогенизатор крепится на площадку подъемного устройства и с помощью пульта управления может свободно перемещаться по вертикальной направляющей.

Погружной гомогенизатор комплектуется с мотор-редуктором, крепится на стенки и помещается в емкость.

Преимуществами погружного гомогенизатора являются отсутствие торцевых уплотнений и обвязывающих трубопроводов, и как следствие возможность работать при высоких температурах, мобильность, возможность погружения гомогенизатора в емкости любого размера.

Погружной гомогенизатор может быть доукомплектован преобразователем частоты вращения, установка которого позволяет добиться увеличения скорости вращения.

Детали, находящиеся в контакте с обрабатываемым продуктом, выполнены из хромникелевой стали.

Область применения погружного гомогенизатора:

  • Косметическая промышленность
  • Для получения гомогенных косметических продуктов (крема, гели) и др.
  • Химическая промышленность
  • Молочная промышленность
  • Плодоовощная промышленность

Технические характеристики погружного гомогенизатора

Гомогенизатор (диспергатор) вертикальный многоступенчатый.


Назначение. Предназначен для многокомпонентного гомогенизирования смесей. Используется в молочной промышленности, а также может использоваться в косметической, фармацевтической, химической промышленностях.

Устройство. Представляет собой многоступенчатый гомогенизатор, до 19 ступеней. Продукт переходя из ступени в ступень постепенно измельчается и смешивается до нужной степени гомогенизации (2...5 мкм). Эффект гомогенизации оказывает положительное воздействие на физическую структуру молока, молочных продуктов.

В стандартной комплектации скорость вращения ротора до 3000 об/мин.
Может быть доукомплектован преобразователем частоты вращения, установка которого позволяет добиться увеличения скорости вращения до 6000 об/ мин.

Более высокая степень защиты от потерь через уплотнения. Имеет возможность подключения к однофазной или трехфазной сети.

Гомогенизатор позволяет добиться:

  • уменьшения размеров жировых шариков, что предотвращает отстой сливок,
  • более белого и аппетитного цвета,
  • повышенной сопротивляемости масложировой эмульсии,
  • улучшения вкуса и аромата,
  • увеличения срока хранения молочных и кисломолочных продуктов.

Надежность. Все части гомогенизатора, контактирующие с продуктом, изготовлены из высококачественной пищевой нержавеющей стали AISI 304, AISI 316, установлено импортное торцевое уплотнение имеющее увеличенный ресурс, отсутствие быстроизнашиваемых деталей (уплотнение плунжерных пар).

По многим параметрам превосходит зарубежные образцы и не имеет российских аналогов

Технические характеристики многоступенчатого гомогенизатора

Гомогенизатор роторно-кавитационный

Предназначен для многокомпонентного гомогенизирования нерастворимых сред с целью получения эмульсий и суспензий в пищевой, косметической, фармацевтической, химической и других промышленностях, в т. ч. для вязких продуктов.

Специальная конструкция гомогенизатора, специальная геометрия корпуса и вращающихся рабочих частей обеспечивает высокую производительность. Применяемые материалы гигиеничны, конструкция гомогенизатора практична в эксплуатации.

Гомогенизаторы роторно-кавитационные

4-х роторные гомогенизаторы по своим параметрам не имеют аналогов!

Преимущества

  • Все части гомогенизатора, контактирующие с продуктом, изготовлены из высококачественной пищевой нержавеющей стали.
  • Установлено торцевое уплотнение, имеющее увеличенный ресурс и исключающее потери продукта.
  • Гарантированная работа при более высоких, чем у существующих аналогов, температурных режимах (до 115°С).
  • Отличная работа в кислото- и -щелочесодержащих средах.
  • Компактность, возможность вертикального расположения.
  • Высокая степень защиты от потерь через уплотнения (крышка гомогенизатора отделена от крышки двигателя).

Принцип работы

Обрабатываемый продукт подводится к всасывающему патрубку и отводится из напорного патрубка под воздействием подпирающего давления.

В гомогенизирующем узле происходит раздробление продукта между вращающимся и стационарным калибровочными цилиндрическими ножами ротора и статора. Вращающийся и стационарный калибровочные ножи исполнены в виде колец с отверстиями.

Попадающие на гомогенизирующий узел частицы (например, жировые шарики) выдавливаются крыльчаткой под воздействием давления, созданного центробежной силой, и проходят через отверстия, где происходит постепенное срезание (раздробление) подвижной частью кольцевого ножа (каждым отверстием вращающейся части) жировых шариков по мере их продвижения.

Технические характеристики роторно-кавитационного гомогенизатора*

Гомогенизаторы (диспергаторы) аналог импортного

Интенсификация процессов 100-600%!

Гомогенизатор позволяет одновременно производить диспергирование, гомогенизирование и перекачивание продукта с повышением давления на выходе.

Специальная конструкция гомогенизатора (две рабочие камеры), специальная геометрия корпуса (с отсутствием "мертвых зон") и вращающихся рабочих частей обеспечивает высокую производительность. Применяемые материалы гигиеничны, конструкция гомогенизатора практична в эксплуатации.

Гомогенизатор обладает высокой производительностью, позволяет получать высокостабильные эмульсии и суспензии, обеспечивает степень гомогенизации 80%, размер частиц до 2 мкм. Может быть встроен в уже существующие линии.

Сфера применения в промышленности:

  • Молочная - мягкий творог, кефир, сгущенное молоко, плавленый сыр, восстановление сухого молока, сливок.
  • Масложировая - комбинированные масла, маргарины, майонез, пасты.
  • Плодоовощная - джемы, повидло, кетчупы, соусы, конфитюры, пюре, пасты.
  • Кондитерская - крема, начинки, шоколадно-ореховые пасты, шоколадная глазурь.
  • Безалкогольная - соки, нектары, напитки.
  • Косметическая - крема, шампуни, бальзамы, гели, мази, зубные пасты.
  • Фармацевтическая - мази, эмульсии, гели.
  • Химическая - моющие средства,клеи, лаки, политура, дезинфицирующие средства.

Технические характеристики гомогенизатора*

* Технические характеристики могут меняться по желанию заказчика.

Вакуумный миксер-гомогенизатор.

Установка представляет собой вакуумный реактор,с перемешивающим устройством, к которому на рециркуляцию подсоединен гомогенизатор. После загрузки основных компонентов в емкость реактора, из системы откачивается воздух, и установку включают в режим рециркуляции, в процессе которой происходит измельчение и смешивание загруженных компонентов. Встроенная в систему воронка позволяет дозагружать необходимые компоненты в процессе гомогенизации.

Основным преимуществом данной конструкции является то,
что она позволяет смешивать между собой такие компоненты, которые при смешивании на открытом воздухе затвердевают еще в процессе смешивания.

Заводские испытания гомогенизатора

Гомогенизаторы предназначены для дробления жировых шариков в молоке, жидких молочных продуктах и смесях мороженного. Они применяются в различных технологических линиях для молока и молочных продуктов. Для гомогенизации молока известно и другое оборудование (эмульгаторы, эмульсоры, вибраторы и др.), но оно менее эффективно.

Наибольшее применение в молочной отрасли получили гомогенизаторы клапанного типа К5 - ОГ2А - 1,25; А1 - ОГМ 2,5 и А1 - ОГМ, представляют собой многоплунжерные насосы высокого давления с гомогенизирующей головкой. Гомогенизаторы состоят из следующих основных узлов: кривошипно - шатунного механизма с системой смазки и охлаждения, плунжерного блока с гомогенизирующей и манометрическими головками и предохранительным клапанном, станины. Привод осуществляется от электродвигателя с помощью клиноременной передачи. Кривошипно - шатунный механизм преобразует вращательное движение, передаваемое клиноременной передачей от электродвигателя, в возвратно - поступательное движение плунжеров. Последние посредством манжетных уплотнений входят в рабочие камеры плунжерного блока и совершая всасывающие и нагнетательные ходы, создают необходимое давление гомогенизируемей жидкости. Кривошипно - шатунный механизм описываемых гомогенизаторов состоит из коленчатого вала, установленного на двух конических роликоподшипниках; крышек подшипников; шатунов с крышками и вкладышами; ползунов, шарнирно соединенных с шатунами с помощью пальцев; стаканов; уплотнений; крышки корпуса и ведомого шкива, консольно закрепленного на конце коленчатого вала. Внутренняя полость кривошипно - шатунного механизма - масляная ванна. Задней стенки корпуса смонтированы маслоуказатель и сливная пробка. В гомогенизаторе К5 - ОГ2А - 1,25 смазка трущихся деталей кривошипно -шатунного механизма производится путем разбрызгивания масла вращающимся коленчатым валом. Конструкция корпуса и сравнительно небольшие нагрузки на кривошипно - шатунный механизм гомогенизатора К5 - ОГ2А - 1,25 позволяет охладить масло, помещенное внутри корпуса, за счет теплоотдачи с поверхности в окружающую среду. Водопроводной водой охлаждаются только плунжеры. В гомогенизаторах А1 - ОГМ - 2,5 и А1 - ОГМ в сочетании с разбрызгиванием масла в нутрии корпуса применяют принудительную систему смазки наиболее нагруженных трущихся пар, что увеличивает теплоотдачу. Масло в этих гомогенизаторах охлаждается теплопроводной водой которая поступает в змеевик охлаждающего устройства, уложенного на дне корпуса, а плунжеры водопроводной водой, подающей на них через отверстие в трубе. В системе установлено реле протока для контроля за протеканием воды. К корпусу КШМ с помощью двух шпилек прикрепляется плунжерный блок, предназначенный для всасывания продукта из подающей магистрали и нагнетания его под высоким давлением в гомогенизирующую головку. Плунжерный блок включает в себя корпус, плунжеры манжетные уплотнения, нижнее, верхнее и передние крышки, всасывающие и нагнетательные клапаны, седла клапанов, прокладки, втулки, пружины, фланец, штуцер, фильтр во всасывающем канале блока. На торцевой плоскости плунжерного блока имеет гомогенизирующая головка, предназначенная для выполнения двухступенчатой гомогенизации продукта за счет его прохода под высоким давлением через щель между клапанном и седлом клапана в каждой системе ступени. На верхней плоскости плунжерного блока закреплена манометрическая головка для контроля давления гомогенизации. Манометрическая головка имеет дросселирующее устройство дающее возможность эффективно уменьшать амплитуду колебания стрелки манометра. Манометрическая головка состоит из корпуса, иглы, уплотнения, поджимающей гайки, шайбы и манометра с мембранным разделителем. В торцевой плоскости плунжерного блока со стороны, противоположной крепления гомогенизирующей головки, распложен предохранительный клапан, который предотвращает повышение давления гомогенизации по сравнению с номинальным. Предохранительный клапан включает в себя винт, контргайку, пяту, пружину, клапан и седло клапана. На максимальное давление гомогенизации предохранительный клапан настраивают, вращая прижимной винт, который воздействует на клапан через пружину. Станина гомогенизатора представляет собой литую или сварную конструкцию из швеллеров, облитой листовой сталью. На верхней плоскости станины установлен КШМ. Внутри на двух кронштейнах шарнирно закреплена плита с размещенной на ней эл. двигателем. Кроме того плита поддерживается винтами, регулирующие клиновых ремней. Станина имеет четыре регулируемые по высоте опоры. Боковые окна станины закрываются съемными крышками. Молоко или молочный продукт подается с помощью насоса во всасывающий канал плунжерного блока. Из рабочей полости блока продукт под давлением попадает через нагнетательный клапан гомогенизирующую головку с большой скорости проходит через лицевой зазор, образующийся между притертыми поверхностями гомогенизирующего клапана и его седлом. При этом происходит диспергирование жидкой фазы продукта. Из гомогенизатора продукт направляется по молокопроводу на дальнейшую переработку или предварительное хранение.

Гомогенизирующие головки подвергались тем или другим мало существующим изменениям, однако, принцип устройства их сохраняющихся до сих пор без изменения. Форма рабочей поверхности клапана обычно плоская, тарельчатая или конусная с небольшим углом конусности. У гомогенизатора с плоскими клапанами с концентрическими рифлями располагаются такие же рифли на поверхности седла. Следовательно, форма прохода для молока в радиальном направлении изменяется, что должно способствовать лучшей гомогенизации. Жидкий продукт в головку может нагнетаться любым насосом, обладающим равномерной подачей и способна создавать высокое давление. Для этой цели применимы многоплунжерные, ротационные и винтовые насосы. Наибольшее распространение нашли гомогенизаторы высокого давления с трехплунжерными насосами.

Схема устройства плунжерного гомогенизатора клапанного типа показана на рис. 3

Молоко при ходе плунжера влево проходит через всасывающий клапан 3 в цилиндр, а при ходе плунжера вправо проталкивается через клапан 4 в нагнетательную камеру, на которой установлен манометр 10 для контроля давления. Далее молоко по каналу в головку 5,в которой поджимает клапан 7, прижимаемый к седлу 6 пружиной 8. Натяжение пружины регулируется винтом 11. Клапан и седло притерты друг к другу. В нерабочем положении клапан плотно прижат к седлу пружиной 8, которая стала регулировочным винтом 11, а в рабочем, когда нагнетается жидкость, клапан приподнят давлением жидкости и находится в «плавающем» состоянии. Характерным показателем режимы гомогенизации, играющим большую роль при регулировке машины, является давление гомогенизации. Чем оно выше, тем эффективнее процесс диспергирования. Давление регулируют винтом 11, руководствуясь показаниями манометра 10. При завинчивании винта давления пружины на клапан увеличивается следовательно, высота клапанной щели увеличивается. Это приводит к увеличению гидравлических сопротивлений при движении жидкости через клапан, т. е. к увеличению давления, необходимого для проталкивания данного количества жидкости.

Способность плунжерного насоса создавать высокое давление ставит под угрозу сохранность деталей в случаи, если канал засориться в седле клапана. Поэтому гомогенизатор снабжен предохранительным клапаном 9, через который жидкость выходит наружу, когда давление в машине выше установленного. Придельное давление, при котором предохранительный клапан открывается, регулируют, затягивая винтом пружину.

На рис. 4 приведен гомогенизатор с двойным дросселированием, в котором жидкость проходит последовательно через две рабочие головки. В каждой головки давление пружины на клапан регулируется отдельно, своим винтом. В таких головках гомогенизация происходит в две ступени.

Рабочее давление в нагнетательной камере равно сумме обоих перепадов. Применение двухступенчатой гомогенизации обусловлено преимущественно тем, что во многих эмульсиях после гомогенизации в первой ступени наблюдается на выходе обратное слипание диспергированных частиц и образование «гроздьев», которые ухудшают эффект диспергирования.

Задача второй ступени состоит в раздроблении, рассеиваний таких сравнительно неустойчивых образований.

Для этого требуется уже ни столь значительное механическое воздействие, поэтому перепад давлений во второй вспомогательной ступени гомогенизатора значительно меньше, чем в первой, от работы которой в основном и зависит степень гомогенизации.

Рисунок 4 - Схема двухступенчатой гомогенизации

В общем конструктивном оформлении современных гомогенизаторов находит применение основные принципы и положения технической эстетики, санитарии и гигиены. Следуя новым тенденциям в развитиям оборудования молочных предприятий, новые конструкции гомогенизаторов выполняют обтекаемой формы, облицовывают и закрывают кожухами из нержавеющей сталью с полированной поверхностью.

Исходя из производительности гомогенизатора и конструктивных соображений, за прототип выбираем гомогенизатор марки А1 - ОГМ - 2,5.

Гомогенизация - механическое дробления жировых шариков в молоке (сливках) с целью равномерного распределения жира в общей массе продукта и предотвращения его отстаивания. Разная плотность жира и плазмы в составе молока и сливок приводит к отделению жировой фракции при хранении продукции. Для того чтобы стабилизировать консистенцию молочной структуры и улучшить вкусовые качества дисперсной смеси используется гомогенизатор пищевых продуктов.

Гомогенизатор молочный производит на обрабатываемое сырье механическое воздействие. Процесс диспергирования обеспечивает стабилизацию высокодисперсной жировой эмульсии и придает продукту гомогенизированную консистенцию, а именно вещество в оболочке и структуре содержащегося в молоке жира подвергается перераспределению, мобилизуются плазменные белки, фосфатиды переходят с оболочки жировых шариков в плазму продукта.

Принцип работы

Принцип работы основных типов гомогенизатора для молока основан на разнице давления в системе, при котором происходит преобразование жидкостей с полидисперсными характеристиками в продукцию с однородной консистенцией. В оборудовании может быть установлена рабочая головка одно- или двухступенчатого типа. Последняя модификация агрегатов предназначена для обработки сырья с высоким процентом жирности.

Гомогенизация стала стандартным производственным процессом, повсеместно практикуемым в качестве средства удерживания жировой эмульсии от разделения под действием силы тяжести. Голен (Gaulin), который разработал этот процесс в 1899 г., дал ему следующее определение на французском языке:»Fixer la composition des liquides».

Сначала гомогенизация приводит к расщеплению жировых шариков на гораздо более мелкие (см. рис.1). В результате уменьшается образование сливок и может также быть снижена тенденция шариков к слипанию или образованию крупных агломератов. В основном гомогенизированное молоко производится механическим способом. Оно на высокой скорости прогоняется сквозь узкий канал.

Разрушение жировых шариков достигается сочетанием таких факторов, как турбулентность и кавитация. В результате диаметр шариков уменьшается до 1 мкм, и эго сопровождается четырех — шестикратным увеличением площади промежуточной поверхности между жиром и плазмой. В результате перераспределения оболочечного вещества, полностью покрывавшего жировые шарики до их разрушения, вновь образованные шарики имеют недостаточно прочные и толстые оболочки. В состав этих оболочек также входят адсорбированные белки плазмы молока.

Фокс вместе со своими коллегами исследовал жиропротеиновый комплекс, полученный в результате гомогенизации молока. Он доказал, что казеин является протеиновым слагаемым комплекса и что он, возможно, связан с жировой фракцией через полярные силы притяжения. Он также установил, что казеиновые мицеллы активизируются в момент прохождения сквозь клапан гомогенизатора, вызывая предрасположенность к взаимодействию с жировой фазой.

Требования к процессу

Физическое состояние и концентрация жировой фракции во время гомогенизации влияют на размеры жировых шариков. Гомогенизация холодного молока, в котором жир в основном присутствует в затвердевшем состоянии, практически неосуществима. Обработка молока при температуре 30 — 35°С приводит к неполной дисперсии жировой фракции. Гомогенизация по-настоящему эффективна, когда вся жировая фаза находится в жидком состоянии, причем в концентрациях, нормальных для молока. Продукты с повышенной массовой долей жира имеют тенденцию к образованию крупных скоплений жировых шариков, особенно при низкой концентрации протеинов сыворотки на фоне высокого содержания жира. Сливки с жирностью выше 12% не могут быть успешно гомогенизированы при стандартном повышенном давлении, потому что из-за недостатка мембранного материала (казеина) шарики жира слипаются в гроздья. Для достаточно эффективной гомогенизации на один грамм жира должно приходиться 0,2 грамма казеина.

Процессы гомогенизации, проводящиеся под высоким давлением, приводят к образованию маленьких жировых шариков. С ростом температуры гомогенизации возрастает дисперсность жировой фазы — соразмерно с уменьшением вязкости молока при повышенных температурах.

Обычно гомогенизацию проводят при температуре от 55 до 80°С, под давлением от 10 до 25 МПа (100-250 бар), в зависимости от типа обрабатываемого продукта.

Характеристики потока

При прохождении потока по узкому каналу его скорость возрастает (см. рис.2). Скорость будет расти до тех пор, пока статическое давление не снизится до такого уровня, при котором жидкость закипает. Максимальная скорость главным образом зависит от давления на входе. Когда жидкость покидает щель, скорость снижается, а давление начинает расти. Кипение жидкости прекращается, и паровые пузырьки взрываются.

Теории гомогенизации

За годы применения процесса гомогенизации возникло много теорий, объясняющих механизм гомогенизации при высоком
давлении. Две теории, объясняющие дисперсную систему нефть -вода по аналогии с молоком, где диаметр большинства капель составляет меньше 1 мкм, не устарели до настоящего момента.
Они дают объяснение влияния различных параметров на эффективность гомогенизации.

Теория разрушения шариков турбулентными водоворотами («микровихрями») основана на том, что в жидкости, движущейся с высокой скоростью, возникает большое количество турбулентных микропотоков.

Если турбулентный микропоток сталкивается с соразмерной ему каплей, последняя разрушается. Данная теория позволяет предвидеть изменения результатов гомогенизации при изменении применяемого давления. Эта связь была обнаружена во многих исследованиях.

С другой стороны, теория кавитации гласит, что капельки жира разрушаются ударными волнами, возникающими при взрывах паровых пузырьков. Согласно этой теории, гомогенизация происходит при покидании жидкостью щели. Таким образом, противодавление, необходимое для кавитации, имеет в этом случае большую значимость. Это было подтверждено на практике. Однако гомогенизация возможна и без кавитации, но в таком случае она менее эффективна.

Рис.3 Разрушение жировых шариков на первой и второй ступенях гомогенизации.
1 После первой ступени
2 После второй ступени

Одноступенчатая и двухступенчатая гомогенизация

Гомогенизаторы могут быть оснащены одной гомогенизирующей головкой или двумя, последовательно соединенными. Отсюда название: одноступенчатая гомогенизация и двухступенчатая гомогенизация. Обе системы показаны на рис.5 и 6. При одноступенчатой гомогенизации весь перепад давления используется
в единственной ступени. При двухступенчатой гомогенизации суммарное
давление замеряется перед первой ступенью Р 1, и перед второй ступенью Р 2 .

Для достижения оптимальной эффективности гомогенизации обычно используется двухступенчатый вариант. Но желаемые результаты удается получить, если соотношение Р 2: Р 1 равняется примерно 0,2. Одноступенчатый вариант используется для гомогенизации

  • продукции с низкой жирностью,
  • продукции, требующей высокой вязкости (образования определенных агломератов).
  • в продуктах, для которых требуется низкая вязкость
  • для достижения максимальной эффективности гомогенизации (микронизации).

На рис.3 показано образование и разрушение скоплений жировых шариков на второй ступени гомогенизации.

Влияние гомогенизации на структуру и свойства молока

Эффект гомогенизации оказывает положительное воздействие на физическую структуру
и свойства молока и проявляется в следующем:

  • Уменьшение размеров жировых шариков, что предотвращает отстой сливок
  • Более белый и аппетитный цвет
  • Повышенная сопротивляемость окислению жира
  • Улучшенные аромат и вкус
  • Повышенная сохранность кисломолочных продуктов, изготовленных из гомогенизированного молока.

Однако гомогенизации свойственны и определенные недостатки. В их числе:

  • Невозможность сепарирования гомогенизированного молока
  • Несколько повышенная чувствительность к воздействию света — как солнечного, так и от люминесцентных ламп — может привести к возникновению так называемого солнечного привкуса
  • Пониженная термоустойчивость — особенно выражена при испытании первой ступени гомогенизации, гомогенизации обезжиренного молока и в других случаях, способствующих образованию скоплений жировых шариков
  • Непригодность молока для производства полутвердых и твердых сыров, так как сгусток будет плохо отделять сыворотку.

Гомогенизатор

Для обеспечения максимальной эффективности гомогенизации обычно требуются гомогенизаторы высокого давления.

Продукт поступает в насосный блок, где его давление повышается поршневым насосом. Уровень возникшего давления зависит от противодавления, определяемого расстоянием между поршнем и седлом в гомогенизирующей головке. Давление Р 1 всегда означает давление гомогенизации. Р 2 — это противодавление первой ступени гомогенизации или давление на входе во вторую ступень.

Рис.4 Гомогенизатор — это большой насос высокого давления с устройством противодавления.
1 Главный двигатель привода
2 Клиноременная передача
3 Указатель давления
4 Кривошипношатунный механизм
5 Поршень
6 Уплотнение поршня
7 Литой насосный блок из нержавеющей стали
8 Клапаны
9 Гомогенизирующая головка
10 Гидравлическая система


Рис.5 Одноступенчатая гомогенизация. Схема гомогенизирующей головки:
1 Клапан
2 Ударное кольцо
3 Седло
4 Гидравлический привод

Насос высокого давления

Поршневой насос приводится в движение мощным электродвигателем (поз. 1 на рис.4) через коленчатый вал и шатуны — эта передача преобразует вращение двигателя в возвратно-поступательное движение поршней насоса.

Поршни (поз. 5) перемещаются в блоке цилиндров высокого давления.
Они изготовлены из высокопрочного материала. Поршни оснащены двойными уплотнениями. В пространство между уплотнениями подается вода для охлаждения поршней. Туда же может подаваться горячий конденсат для предотвращения повторного обсеменения микроорганизмами продукта при работе гомогенизатора. Также возможно использование горячего конденсата для сохранения условий асептического производства продукта при работе гомогенизатора.

Гомогенизирующая головка

На рис.5 и 6 показаны гомогенизирующая головка и ее гидравлическая система. Поршневой насос поднимает давление молока с 300 кПа (3 бара) на входе до давления гомогенизации 10-15 МПа (100-240 бар), в зависимости от вида продукции. Давление на входе в первую ступень перед механизмом (давление гомогенизации) автоматически поддерживается неизменным. Давление масла на гидравлический поршень и давление гомогенизации на клапан уравновешивают друг друга. Гомогенизатор оборудован одним общим масляным баком, независимо от того, одноступенчатый это вариант или двухступенчатый. Однако в двухступенчатом гомогенизаторе есть две гидросистемы, и у каждой свой насос. Новое давление гомогенизации устанавливается изменением давления масла. Давление гомогенизации указывается на манометре высокого давления.

Процесс гомогенизации происходит на первой ступени. Вторая главным образом служит двум целям:

Созданию постоянного и управляемого противодавления в направлении первой ступени, обеспечивая тем самым оптимальные условия гомогенизации

Разрушению слипшихся гроздьев жировых шариков, образующихся сразу после гомогенизации (см. рис.3).

Обратите внимание, что давление гомогенизации — это давление перед первой ступенью, а не перепад давлений.

Детали гомогенизирующей головки обработаны на прецизионном шлифовальном станке. Ударное кольцо посажено на свое место таким образом, что его внутренняя поверхность перпендикулярна выходу из щели. Седло скошено под углом 5 градусов, чтобы продукт получал контролируемое ускорение, предотвращая таким образом ускоренный износ, неизбежный в ином случае.

Молоко под высоким давлением проникает между седлом и клапаном. Ширина щели составляет примерно 0,1 мм, что в 100 раз превышает диаметр жировых давления, произведенного поршневым насосом, преобразуется в кинетическую энергию. Часть этой энергии после прохождения через механизм снова преобразуется в давление. Другая часть высвобождается в виде тепла; каждые 40 бар падения давления после прохождения через механизм поднимают температуру на 1°С. На гомогенизацию затрачивается менее 1% всей этой энергии, и все же гомогенизация с помощью высокого давления пока остается наиболее эффективным методом из всех имеющихся на сегодняшний день.

Рис.6
Двухступенчатая гомогенизация.
1 Первая ступень
2 Вторая ступень

Эффективность гомогенизации

Цель гомогенизации зависит от способа её применения. Соответственно меняются и методы оценки эффективности.

В соответствии с законом Стокса, растущая скорость частицы определяется по следующей формуле, где: v — скорость

q — ускорение свободного падения p — размер частицы η hp — плотность жидкости η ip — плотность частицы t — вязкость

Или v = константа х р 2

Из формулы следует, что уменьшение размера частицы является эффективным способом уменьшения возрастания скорости. Следовательно, уменьшение размера частиц в молоке приводит к замедлению скорости отстаивания сливок.

Аналитические методы

Аналитические методы определения эффективности гомогенизации можно
разделить на две группы:

I. Определение скорости отстаивания сливок

Самый старый способ определения времени отстаивания сливок — это взять образец, выдержать его определенное время и затем проанализировать содержание жира в различных его слоях. На этом принципе построен метод USPH. Например, образец объемом в один литр выдерживается 48 часов, после чего определяется содержание жира в верхнем слое (100 мл), а также и во всем остальном молоке. Гомогенизация считается удовлетворительной, если массовой доли жира в нижнем слое в 0,9 раза меньше, чем в верхнем слое.

На этом же принципе построен метод NIZO. В соответствии с этим методом образец объемом, скажем, в 25 мл подвергается центрифугированию в течение 30 минут на скорости 1000 об/мин при температуре 40°С и радиусе 250 мм. После этого жирность 20 мл нижнего слоя делится на жирность всего образца и полученный результат умножается на 100. Это соотношение называется значением NIZO. Для пастеризованного молока оно обычно составляет 50-80%.

II. Фракционный анализ

Распределение размеров частиц или капель в образце можно определить хорошо разработанным методом с применением установки лазерной дифракции (см. рис.7), которая посылает лазерный луч в образец, находящийся в кювете. Степень рассеивания света будет находиться в зависимости от размеров и количества частиц, содержащихся в исследуемом молоке.

Результат приведен в виде графиков гранулометрического состава. Процент массовой доли жира представлен как функция размера частицы (размер жирового шарика). На рис.8 показаны три типовых графика распределения размеров жировых шариков. Обратите внимание на то, что при повышении давления гомогенизации график смещается влево.

Расход энергии и его влияние на температуру

Подводимая электрическая мощность, необходимая для гомогенизации, выражается следующей формулой:

Гомогенизатор в технологической линии

Обычно гомогенизатор устанавливается в начале линии, то есть до секции окончательного нагрева в теплообменнике. В большинстве пастеризационных установок по производству питьевого молока для потребительского рынка гомогенизатор стоит после первой регенеративной секции.

При производстве стерилизованного молока гомогенизатор обычно помещается в начале процесса высокотемпературной обработки, протекающей в системе с косвенным нагревом продукта, и всегда в конце процесса, проходящего в системе с прямым нагревом продукта, т.е. в асептической части установки после участка стерилизации продукта. В таком случае используется асептический вариант гомогенизатора, оснащенный специальными поршневыми уплотнениями, прокладками, стерильным конденсатором и специальными асептическими демпферами.

Асептический гомогенизатор устанавливается после секции стерилизации установок с прямым обогревом продукта в случаях производства молочных продуктов с массовой долей жира более 6 10% и/или с повышенным содержанием белка. Дело в том, что при очень высоких температурах обработки в молоке с высоким содержанием жира и/или протеинов образуются скопления жировых шариков и мицелл казеина. Расположенный после секции стерилизации асептический гомогенизатор разрушает эти агломерированные частицы.

Полная гомогенизация

Полная гомогенизация — наиболее распространенный способ гомогенизации питьевого молока и молока, предназначенного для производства кисломолочных продуктов. Жирность молока, а иногда и содержание
сухого обезжиренного остатка (при производстве йогурта, например) нормализуются до гомогенизации.

Раздельная гомогенизация

Раздельная гомогенизация означает, что основная часть обезжиренного молока ей не подвергается. Гомогенизируются сливки и небольшое количество обезжиренного молока. Этот способ гомогенизации обычно используется для пастеризованного питьевого молока. Основное достоинство раздельной гомогенизации — ее относительная экономичность. Общий расход энергии снижается примерно до 65% вследствие меньшего количества молока, проходящего через гомогенизатор.

Поскольку наибольшая эффективность гомогенизации может быть достигнута в случае, если в молоке содержится не менее 0,2 г казеина на 1 г жира, рекомендуемая максимальная жирность составляет 12%. Часовая производительность установки, в которой проводится раздельная гомогенизация, может быть определена по далее приведенной формуле.

Производство пастеризованною нормализованного молока (Q sm) в час составит приблизительно 9690 л. Если мы подставим эту цифру в формулу 2, то получим,
что часовая производительность гомогенизатора равняется примерно 2900 л.,
то есть около трети его полной производительности.

Схема потоков в установке для частично гомогенизированного молока приведена на рис.10.

Влияние гомогенизированных молочных продуктов на организм человека

В начале 1970-х годов американский ученый К. Остер (К. Oster) выступил с гипотезой о том, что гомогенизация молока позволяет ферменту ксантиноксидаза проникать через кишечник в кровеносную систему. (Оксидаза — это фермент, который катализирует присоединение кислорода к субстрату вещества или отщепление от него водорода.) По утверждению Остера, оксидаза ксантина способствует процессу повреждения кровеносных сосудов и ведет к атеросклерозу.

Эта гипотеза была отвергнута учеными на том основании, что человеческий организм сам вырабатывает в тысячи раз большие количества этого фермента, чем теоретически могло бы привнести в него гомогенизированное молоко.

Итак, никакого вреда от гомогенизации молока быть не может. С точки зрения питательности гомогенизация никаких особых изменений не привносит, за исключением, пожалуй, того, что в гомогенизированных продуктах жир и протеин расщепляются быстрее и легче.

Тем не менее Остер прав в том, что процессы окисления могут приносить вред человеческому организму и что диета важна для здоровья.