Ремонт и усиление каменных стен. Усиление стен из обожженного кирпича

Конструкции из кирпичной кладки усиливают для воспринятая возможных повышенных горизонтальных или вертикальных нагрузок, для устранения повреждений кладки или для повышения категории кладки по сопротивляемости сейсмическим воздействиям, когда она не отвечает требованиям действующих норм. Повышение категории кладки по сопротивляемости сейсмическим воздействиям может быть получено в результате замены (перекладки) участков стен на растворах со следующими полимерными добавками в цементные растворы: латекса сополимера винилиденхлорида с винихлоридом ВХВД-65 ПЦ, бутадиенстирольного латекса СКС-65 ГП-Б, дисперсии поливинилацетата ПВА, бутадиенстиролакрилонитрильного латекса БСНК. В случае применения этих добавок при замене сильно поврежденных стен допускается устройство облегченных кладок с эффективным утеплителем, применение пустотелого кирпича, в т.ч. по ГОСТ 530-80 и др.
Наиболее широкое распространение получили следующие способы усиления конструкции из кирпичной кладки: установка арматурных стенок в слое торкрет-штукатурки или бетона для больших участков стен; устройство железобетонных обойм для отдельных простенков, перемычечных поясов и столбов; установка стальных элементов для отдельных простенков, перемычечных поясов и столбов; инъецирование трещин полимеррастворами или цементация как отдельных участков, так и стен в целом.
Усиление стен арматурными сетками в слое торкрет-штукатурки (бетона) (рис. 3.47) применяют либо для повышения категории кирпичной кладки по сопротивляемости сейсмическим воздействиям, либо для увеличения прочности кладки, в основном для воспринятая главных растягивающих напряжений. Для установки арматурных сеток горизонтальные и вертикальные швы расчищаются на глубину 15 мм, и в стенах сверлятся отверстия под анкеры, с помощью которых закрепляют сетки, и по ним торкретируют стены.
При установке сеток с двух сторон стены их связывают между собой Z-образными анкерами, пропущенными сквозь стену в специально просверленных отверстиях. Анкеры устанавливают в шахматном порядке не более 600 мм. Для Z-образных анкеров применяют арматуру класса A-I диаметром не менее 6 мм. Расстояния от края сетки до трещины должны быть не менее 500 мм, а при прохождении трещины вблизи пересечения стен сетки заводят и на неповрежденные стены на длину не менее 1000 мм (рис. 3.47, б).

При наличии трещин в местах опирания перемычек кроме сеток проемы усиливают установкой дополнительных каркасов из арматурных стержней диаметром не менее 14 мм и хомутов 10 мм, расположенных с шагом не более 200 мм. Каркасы устанавливают по периметру проема (рис. 3.47, в).
Толщину слоя торкрет-бетона или торкрет-раствора принимают по расчету, но не менее 30 мм. Усиление кладки по сопротивляемости сейсмическим воздействиям осуществляют также с помощью арматурных меток из стержней диаметром не менее 3 мм, установленных с шагом 200 мм в слое торкрет-бетона толщиной 30...40 мм. Усиление кирпичной кладки железобетонной обоймой выполняют, как правило, при ее работе на изгиб и внецентренное сжатие.
Железобетонные обоймы (рис. 3.48, а) выполняют из бетона класса не ниже В12,5 и армируют каркасами или вертикальными стержнями при расстоянии между хомутами не более 150 мм. При длине усиливаемого участка, превышающей в 2 раза толщину стены, через кладку пропускают дополнительные поперечные стержни, расстояние между которыми не должно превышать двух толщин стен или 1 м по длине и 0,75 м по высоте.

Усиление элементов кирпичных и каменных зданий. К их числу отнесены антисейсмические пояса, узлы опирания несущих элементов перекрытий и покрытий, перемычки, перегородки, дымовые и вентиляционные трубы, лестницы, балконы и веранды, козырьки над входом, карнизы, фронтоны, парапеты, детали прокладки проводов и труб через стены и перекрытия.
Антисейсмические пояса. Усиление стен при горизонтальных трещинах в уровне железобетонных поясов и незначительных сдвигов поясов производят следующим способом. С местах трещин кладку очищают от штукатурки на расстоянии 30 см от трещины, а швы на глубину 1...1,5 см и промывают водой. К забитым в стену и железобетонный пояс к дюбелям на расстоянии 1 см от стены крепят сетки из проволоки d = 5 мм и ячейками 150x150 мм. Дюбеля забивают в шахматном порядке с шагом 50 см. Очищенную поверхность тщательно увлажняют и затем торкретируют слоем 3...4 см.
В случае отсутствия анкеровки балок перекрытия после расчистки штукатурки необходимо предусмотреть установку крепежных деталей, пристрелянных к стене двумя дюбелями по оси балки (рис 3.49, а). Крепление в балке осуществляют двумя ершами.
В случае необходимости усиления антисейсмических поясов в местах их ослабления в результате коррозии, брака или разрыва оголяют арматуру пояса и приваривают к ней дополнительные стержни с последующим бетонированием. В местах примыкания стен пояса усиливают аналогично приведенным на рис. 3.49, но стержни приваривают к оголенной арматуре пояса.

В случае устройства железобетонных антисейсмических поясов при усилении многоэтажных зданий с деревянными перекрытиями, сохраняя изложенный выше порядок производства работ, дополняют его установкой опалубки, арматурного каркаса и бетонированием элементов пояса, охватывающих кладку (рис. 3.49, б). Если деревянные балки не заделаны в кладку стен, то необходимо обеспечить их анкеровку к поясу.
В случае устройства металлических антисейсмических поясов при усилении многоэтажных зданий с деревянными перекрытиями предусматривается порядок производства работ, аналогичный устройству железобетонных антисейсмических поясов: разбирают потолок на ширину 1 м по периметру всех стен, отбивают штукатурку с обеих сторон стены в местах установки швеллеров и пробивают отверстия на уровне низа балки для пропуска полосы 50x5 мм длиной по месту.
В пробитые отверстия вставляют полосы и между ними заводят швеллер. К швеллеру с наружной стороны приваривают полосы. Затем устанавливают крепежные элементы из полосы 50x5 мм по оси балок перекрытия, производят обжатие стены швеллерами, соединяемыми между собой полосами, которые приваривают швами толщиной 6 мм к балками перекрытий (рис. 3.49, в) и пришивают ершами крепежные элементы. Пробитые отверстия бетонируют.
В местах пересечений стен швеллеры снизу и сверху сваривают треугольными косынками толщиной 10 мм с размерами боковых сторон 25 см. Сварка производится прерывистым швом. Общая длина должна быть не менее 150 мм с одной стороны. Для усиления связи антисейсмических поясов с кладкой либо устанавливают вертикальные арматурные сетки, которые связывают с кладкой и поясом с последующим торкретированием, либо специальными армированными шпонками из цементного или полимерного раствора.
Места опирания сборных железобетонных элементов - прогонов, балок, ферм, перемычек усиливают устройством под сборные элементы железобетонной подушки. Для этого нагрузка от прогона передается на временные стойки, кладка в месте опирания разбирается с устройством штрабы (рис. 3.50, а). Затем поверхность кладки очищают и промывают, устанавливают опалубку, пространственный арматурный каркас из трех рядов стержней диаметром 12...16 мм и укладывают бетон. Временные стойки снимают после того, как бетон наберет необходимую прочность.

Перемычки. Кирпичные клинчатые перемычки укрепляют при наличии трещин только в перемычке и при отсутствии повреждений в вышележащей кладке. Для этого расчищают горизонтальный шов перемычки с одной стороны на глубину до 7 см. В расчищенный шов укладывают уголок размером 75х75х8 мм на цементном растворе так, чтобы между уголком и перемычкой, а также между уголком и стеной отсутствовал зазор. На расстоянии 37 см с обеих сторон проема пробивают отверстия. Низ отверстий находится на уровне верха проема. Затем расчищают горизонтальный шов у низа перемычки с другой стороны и укладывают второй уголок. В отверстия, пробитые по краям проема, устанавливают обрезки уголков и сваривают их с основными (рис. 3.50, б). Отверстия зачеканивают жестким бетоном на безусадочном цементе.
По краям проема и в средине к нижней стороне уголков приваривают полосы размером 50 х 6 мм. Длина сварных швов lш = 50 мм и высота hш = 6 мм. При арочных и стрельчатых перемычках над проемом усиление их производят торкретированием по сетке, аналогично описанному при усилении кирпичных стен.
При усилении железобетонных перемычек, имеющих трещины с раскрытием в растянутой зоне до 4 мм, по всей длине перемычки с обеих сторон кладку очищают от штукатурки. Затем расчищают нижние горизонтальные швы в пределах опор перемычек с двух сторон на глубину до 6 см. Прорубают отверстия в швах между перемычкой и вышележащей кладкой. В расчищенные швы укладывают уголки размером 50х50х5 на цементном растворе. В отверстия, пробитые над перемычкой, укладывают полосовое железо 50х5 мм. Уголки сваривают швами (lш = 50 мм, hш = 6 мм) с горизонтальными полосами накладками размером 50х5 мм (рис. 3.50, в). При сдвиге перемычки опорные участки и плоскость примыкания к кладке инъецируют. При значительном разрушении перемычки и надперемычечной кладки кладку целесообразно разобрать и заменить перемычку.
Перемычки из стальных проектных профилей устраивают при необходимости усиления перемычек, имеющих недостаточную прочность или получивших повреждения в растянутой зоне. Конструктивно усиление решают в виде горизонтальных стальных элементов из уголков или швеллеров, устанавливаемых на усиливаемом участке в специальные штрабы с двух сторон стены. Между собой элементы усиления стягивают болтами. Стальные элементы оштукатуривают.
Перегородки. В случае когда нарушена или отсутствует связь каркасной перегородки с железобетонной балкой перекрытия, конструкция усиления предусматривает постановку по верху перегородки в местах стоек каркаса специальных фиксирующих деталей. Детали имеют зигзагообразную форму, плотно охватывают железобетонную балку на глубину 5 см и выполняются из стальных полос сечением 50х6 мм. К каркасу перегородки детали крепят стяжными болтами d = 8 мм. Установке деталей должна предшествовать отбивка штукатурки на высоту 30 см по всей длине верхней части каркасной перегородки.
В случае когда нарушена связь перегородки со стенами при деревянном перекрытии, усиление осуществляют установкой с обеих сторон и по верху перегородки металлических уголков размером 50х50 х5, которые скрепляют с перекрытием дюбелями (рис. 3.51, а). По вертикали перегородки крепят к стенам закрепами. Если длина перегородки до 3 м, то она крепится только закрепами к стенам.
При нарушении связи перегородки со стенами допускается усиление в случае, если длина перегородки более 3 м, путем укладки деревянных брусков сечением 60х60 мм, которые скрепляют с нею и перекрытием гвоздями l = 100 м (рис. 3.51, б). По вертикали, как и предыдущем случае, перегородка крепится в стенам закрепами, причем если длина их до 3 м, то достаточно крепить только закрепами. Бруски окрашивают масляной краской.
В случае нарушения связи перегородки из плит типа дифферент со стенами без потери ими устойчивости вначале следует производить временное крепление перегородки. Затем разбирают плинтусы поверху и понизу с обеих сторон перегородки, устанавливают горизонтальные бруски сечением 60х60 мм, которые крепят гвоздями l = 100 мм между собой и к деревянному перекрытию. В тех случая, когда длина перегородки превышает 3 м, дополнительно устанавливают бруски в вертикальном направлении (рис. 3.51, в). После закрепления перегородок временные крепления снимают. Если же перегородка потеряла устойчивость, то ее разбирают и вновь выкладывают.

Усиление гипсопрокатных и гипсолитовых перегородок выполняют устройством армированных растворных слоев. В качестве арматуры можно использовать штукатурную сетку. Усиление узлов крепления гипсопрокатных и гипсолитовых перегородок к каркасу выполняют, как и в предыдущих случаях, устройством обрамляющих поясов из уголков или деревянных брусков по конуру перегородки с последующим креплением уголков или брусков к каркасу.
Дымовые и вентиляционные трубы . В случае растрескивания или частичного обрушения труб их кладку разбирают. Затем проверяют исправность дымовых каналов и разделок. Обнаруженные дефекты устраняют.
Кладку дымовой трубы выполняют на растворе марки 25. По углам устанавливают вертикальный каркас из уголков размером 75х6, скрепленный горизонтальными и диагональными накладками из полосового железа 60х6 и таких же вертикальных элементов по ширине стояка (рис. 3.52). Для стен из кирпича, ракушечника и известняка возможно усиление стоков и торкретбетоном по арматурной сетке при толщине слоя 40...60 мм (рис. 3.53, а).

В случае полного обрушения труб их кладку также разбирают и проверяют состояние дымовых каналов и разделок. Обнаруженные дефекты устраняют. На расчищенное основание устанавливают асбестоцементные безнапорные трубы: на дымоход сечением 12х12 см - одну трубу d = 150 мм, на дымоход сечением 25х12 - две трубы (рис. 3.53, б). Трубы на уровне стропильных ног соединяют схваткой из полосового железа 50 х 5 мм на болтах d - 12...14 мм. На перекрытии для придания устойчивости трубам выполняют железобетонную обойму высотой 30 см. Места прохода труб через кровлю тщательно заделывают.

Лестницы. При наличии трещин в косоурах - на опорах и в пролете и трещин в плите марша для восстановления элементов перед началом работ снимают необходимое количество ступеней. В случае бетонных лестниц отбивают защитный слой бетона и обнажают арматуру. Отрезки арматуры d = 12 мм из стали класса А-I, изготовляемые по месту, приваривают к рабочей арматуре и в заранее просверленные отверстия диаметром 10 мм устанавливают хомуты, а затем проводят обетонирование. Продольные и поперечные трещины в плитах маршей и площадках лестничных клеток расчищают, промывают водой и инъецируют. Длина сварных швов 50 и высота 6 мм.
После снятия необходимого количества ступеней для усиления косоуров на опорах и в пролете заготовляют швеллеры длиной по месту с минимальным расстоянием до концов трещины 25 см. Затем устанавливают обоймы из швеллеров, которые обжимают и сваривают накладками из полосового железа 50х5 мм (не менее 3 шт.), на элемент крепления. Ниже приводятся варианты усиления сборных железобетонных (рис. 3.54, а) и металлических лестниц (рис. 3.54, б). В случае разрушения лестниц в местах опирания бетонных элементов на кладку их усиление производят расчисткой деформированной кладки, установкой подпорок и затем разборкой поврежденной кладки. Образовавшийся проем тщательно очищают от остатков раствора. Поверхность очищенной кладки промывают водой под напором. Устанавливают опалубку до верха бетонируемого участка и укладывают бетон с послойным уплотнением. Арматурные сетки из стержней диаметром 5...6 мм укладывают с шагом по высоте 100 мм (рис. 3.54, в).

Опалубку снимают не ранее чем через семь суток со дня окончания бетонирования. Временное усиление разбирают после достижения бетоном не менее 70%-й проектной прочности.
Балконы и веранды. В зданиях из кирпича, ракушечника, известняка или постелистого бутового камня балконы выполняют из железобетонных плит по деревянным или металлическим балкам. На рис. 3.55 и 3.56 приведены варианты усиления балконов. С помощью арматурных тяжей - при железобетонных плитах балкона и деревянных балках перекрытия (рис. 3.55, a), a также при многопустотном настиле (рис. 3.56, д), швеллерами -- при деревянных балках балкона и тяжами и швеллерами - при металлических балках балкона (рис. 3.56, в, г). В случае необходимости балкон может быть заменен приставной монолитной железобетонной верандой (рис. 3.57).

Усиление карниза или замена его новой конструкцией выполняется укладкой на всю толщину стены железобетонной плиты с выносом в наружную сторону и анкеровки плиты, узла сопряжения мауэрлата и стропильных балок к поясу, обвязке или к перекрытию (рис. 3.59), а усиление карнизов показано на рис. 3.58.

Восстановление разрушенного фронтона. В случае наклонных, горизонтальных трещин или частичного обрушения фронтонов кладку независимо от степени ее повреждения рекомендуется разобрать. Исключением является фронтон в виде железобетонного каркаса. Фронтон при восстановлении можно выполнять в виде деревянного каркаса (рис. 3.60), нижний лежень которого крепиться с помощью металлических анкеров в стену. Стойки каркаса соединяют с лежнем металлическими уголками и ершами. Облицовку или обшивку по каркасу можно выполнять из легких листовых материалов.

Восстановление разрушенных парапетов. Наличие наклонных, горизонтальных трещин или частичное обрушение парапетов требуют независимо от степени их повреждения полной разборки. Восстановление можно выполнять в виде деревянного каркаса с обшивкой. В качестве обшивки могут быть использованы волнистые асбестоцеметные листы. Крепление каркаса осуществляется аналогично решению, изложенному при восстановлении фронтона. Парапеты из кирпича можно усиливать арматурными сетками в слое торкрет-бетона.

Повышение надежности коммуникационных труб и проводок электроосвещения в местах прохода их через перекрытия и стены производится постановкой гильз из кровельной стали с зачеканкой раствором, устройством замка из мятой глины или постановкой резиновых колец, а для электропроводок в местах сопряжения или пересечения металлических труб с проводами - применением металлических или резиновых рукавов (рис. 3.61).

Своевременное предотвращение деформации несущих элементов способствует увеличению периода эксплуатации здания. Усиление кирпичных стен монтируют с целью повышения прочности сооружения. При правильном подходе можно восстановить стену с потерей прочности до 50%. Важно соблюдать нормы и правила на каждом этапе строительства, поскольку опорные элементы конструкций могут сократить несущую способность, и дом начнет рушиться. Существует несколько методов устранения трещин и проседаний конструктивных элементов.

Причины укрепления

Усиление кирпичной кладки проводят для увеличения прочности сооружения. Такие мероприятия гарантируют сохранение целостности конструкции при возможной перепланировке дома, смещении внутренних перегородок, монтаже дополнительных оконных или дверных проемов. Укрепление кирпичной стены позволяет предотвратить деформацию здания в целом. При первых признаках нарушения целостности сооружения рекомендуется монтировать усиление стен.

Деформация кладки происходит под воздействием таких факторов:

  • Неправильно рассчитанный проект. Нарушение нормативной дистанции между постройками, неравномерное распределение несущей способности элементов, чрезмерные нагрузки на фундамент.
  • Нарушение технологии устройства фундамента. Отсутствие дополнительного укрепления рыхлой почвы, неправильная глубина основания, использование добавок в растворах.
  • Некачественная кладка. Неправильно выбран способ устройства оконных и дверных проемов, облицовка смесями с низким уровнем воздухопроницаемости, применение некачественного раствора, отсутствие распределительных плит при укладке перекрытий.
  • Нарушение правил эксплуатации стен. Отсутствие водосточных труб и отмостки, протекание подземных коммуникационных систем, нарушение шарнирных связей несущих элементов с перекрытиями.

Методы усиления кирпичных стен


При нешироких трещинах можно прибегнуть к методу инъектирования.

Схема усиления стен из кирпича разрабатывается с учетом степени деформации. Разрушение кладки проявляется в виде трещин разной ширины. Дефекты до 4 см промывают и заделывают торкретбетоном. Более широкие разъемы через инъекторы заполняют специальной смесью для возобновления уровня прочности. Перед началом работ ремонтируют цоколь, возобновляют кладку, проделывают проемы. Существует несколько способов укрепления стен, выбор зависит от характера разрушения.

Чтобы восстановить треснувшую несущую стену здания, выполняют укрепление обоймами.

Усиление железобетонной обоймой

Сравнительно недорогой метод возобновления несущей способности элементов сооружения. Выполнение занимает немного времени. Главный недостаток - увеличение нагрузки на основание. Этапы работ с железобетонными обоймами:

  1. Креплениями фиксируют на кладке арматурную сетку. Железобетонные оболочки делают из поперечных арматурных прутьев А240/AI класса и продольной арматуры А240-А400/AI, AII, AIII классов.
  2. Определяют толщину и материал для бетонирования. Рекомендуется использовать мелкозернистые бетонные составы 10-го класса и выше.
  3. Обойму толщиной менее 4 см заливают пневмобетоном и дают застыть.
  4. Выполняют облицовку штукатуркой.
  5. Для слоя толще 4 см по периметру устанавливают опалубку, в ней оставляют отверстия для инъекционных трубок.
  6. Заливают площадь монолитными бетонными составами.

Для усиления проемов в стенах можно воспользоваться стальной обоймой.

Применение метода позволяет укрепить несущие элементы конструкции. Стальными обоймами и балками из швеллера можно выполнить усиление проемов в кирпичных стенах. При создании нового оконного отверстия с целью повышения прочности кладки применяют металлоконструкции. Для укрепления проема в кирпичной стене монтируют швеллер. Для усиления стены понадобятся арматурные прутья и профильные уголки.

Этапы проведения работ с металлическими креплениями:

  1. По углам заданной площади раствором крепят уголки.
  2. Фиксируют металлические полосы шириной не более 6 см.
  3. Монтируют остальные продольные элементы. Их размер зависит от высоты заданной площади.
  4. На каркас крепят сетку. Применение металлической основы повышает прочность сооружения.
  5. Заливают цементным раствором толщиной 3 см. Такой слой защитит укрепление стальными тяжами от коррозии.

Усиление кирпичных стен, простенков и колонн

Усиление кирпичных стен . К основным методам усиления кирпичных стен относится:

Заделка трещин на лицевых поверхностях стен;

Установка металлических поясов;

Установка разгрузочных балок;

Перекладка отдельных участков стен;

Повышение их несущей способности с помощью армированных и железобетонных обойм;

Обеспечение пространственной жесткости и устойчивости и др.

При небольших стабилизирующихся трещинах их заделку производят цементно-песчаным раствором с добавлением 30 % известкового теста. При значительном ослаблении стен осуществляют цементацию кладки цементно -_полимерным или расширяющимся раствором.

В том случае, когда трещины в стене сквозные, то осуществляют перекладку стен с двух сторон по фронту на глубину в 1/2 кирпича с обязательным устройством перевязки в один кирпич через каждые четыре ряда кладки, а в длинных и широких трещинах устраивают замок с якорем из прокатного профиля, который укрепляют анкерными болтами (рис.39).

Рис.39. Заделка трещин кирпичными вставками

в простой замок и с якорем

В местах образования сквозных трещин для их стабилизации с двух сторон стены устанавливают стальные накладки из полосовой стали 50 х 10 мм с креплением их болтами с обеих сторон стены (рис. 40, а). Аналогично поступают при появлении сквозных трещин в углах здания (рис.40, б) и в местах пересечения наружных и внутренних стен (рис.40, в).

Рис.40. Способы усиления кирпичных стен

а) установкой стальных связей на болтах; б) в углу здания; в – то же в местах сопряжений наружных и внутренних стен: 1- двусторонняя металлическая накладка из полосовой стали; 2 – круглая сталь диаметром

20-24 мм; 3 – то же, с нарезкой на двух концах

При значительном количестве трещин и когда заделка их не восстанавливает несущую способность стены, производят перекладку отдельных участков стен.

При сильном разрушении кирпичных стен для усиления кирпичной кладки применяют односторонние или двухсторонние железобетонные стенки усиления . При устройстве односторонних стенок в усиливаемые стены забиваются или устанавливаются на растворе в высверленные скважины анкеры, к которым привариваются арматурные сетки диаметром 8-10 мм с размером ячейки 150 х 150 мм (рис.41, а).

При двухстороннем устройстве железобетонных стенок в усиливаемой стене высверливают сквозные отверстия, в которые устанавливают металлические тяжи с шайбами, к которым приваривают такие же арматурные сетки, что и при устройстве односторонних стенок. Толщина стенок усиления достигает 100-150 мм (41, б).

Рис.41. Усиление кирпичной стены односторонней (а) или двухсторонней (б) набетонкой

а) – односторонней набетонкой: 1 – усиливаемая стена; 2 – плиты перекрытия; 3 – набетонка;

4 – штыри диаметром 8-10 мм; 5 – арматурная сетка диаметром 6-8 мм; б) – двухсторонней набетонкой: 1 – усиливаемая стена; 2 – железобетонные стенки усиления, связанные тяжами с усиливаемой стеной; 3 – арматурные сетки, приваренные к шайбам тяжей; 4 – тяжи с шайбами, пропущенные через просверленные отверстия в стене; 5 – отверстия, просверленные в стене для пропуска тяжей; 6 – поверхность стены, подготовленная к бетонированию (зачистка, насечка, промывка)

Когда на фасадах здания имеется множество трещин, для их устранения прибегают к обеспечению пространственной жесткости несущей коробки зданий с помощью устройства обвязочных поясов. Установку металлических поясов производят также при отклонении стен от вертикали в результате неравномерных осадок (рис.42).

В качестве металлических поясов используют сталь круглого или квадратного сечения диаметром 20-40 мм, которую устанавливают под перекрытием каждого этажа. Одни концы металлических поясов приваривают к обрезкам уголков, которые устанавливают по углам здания, а вторые - закрепляют в стяжных муфтах (талреп).

Для случаев обеспечения пространственной жесткости натяжение металлических поясов начинают одновременно по всем этажам, чтобы избежать неравномерной передачи нагрузки. Когда же требуется восстановить вертикальность стены, то натяжения металлических поясов начинают с нижнего этажа.

Заданная величина натяжного усилия обеспечивается специальными динамометрическими ключами в натяжных муфтах.

Рис.42. Обеспечение пространственной жесткости остова здания

1 – тяжи; 2 – муфта натяжения; 3 – металлическая прокладка; 4 – швеллер № 16-20; 5 – уголок

Усиление простенков . Усиление простенков может быть осуществлено за счет:

Увеличения их сечения;

Перекладки;

Устройства металлических каркасов;

Железобетонных и штукатурных армированных обойм;

Установкой гибких или жестких сердечников.

.

Рис.43. Усиление простенков несущих стен:

а, б) – железобетонной обоймой; в) – обоймой из прокатного металла; г) – железобетонным сердечником;

д) – то же, металлическим; 1 – кирпичный простенок; 2 – арматура; 3 – бетон; 4 – поперечная стальная связь;

5 – стальной уголок; 6 – стальная планка; 7 – арматурный каркас; 8 – стальной сердечник

Усиление кирпичных колонн и пилястр . Кирпичные колонны и столбы усиливаются аналогично кирпичным простенкам, т.е., путем устройством металлических, штукатурных или железобетонных обойм (рис.44).

Рис.44. Усиление кирпичных колонн и столбов с помощью устройства

металлического каркаса (а), железобетонной (б) или арматурной (в) обоймы

1 – кирпичная колонна; 2 – металлический каркас или арматура усиления; 3 – цементно-песчанный раствор или бетон замоноличивания

Для повышения эффективности работы металлической обоймы горизонтальным планкам придают предварительное напряжение с помощью электронагрева до температуры 120 0 С.

По второму способу вместо планок используют металлические стержни, концы которых приваривают с одной стороны к вертикальным уголкам обрамления колонны, а другие концы, имеющие резьбовое окончание, пропускают в заранее приваренные отрезки уголков или труб, после чего с помощью навинчивания гаек динамометрическим ключом создают в стержнях горизонтальное напряжение и дополнительное обжатие колонны (рис.45).

Рис.45. Усиление кирпичных колонн с помощью преварительно напряженных стержней

1 – уголки; 2 – отрезок голка; 3 – поперечный стержень; 4 – гайка; 5 - шайба; 6 – штукатурный слой; 7 – прямой клин; 8 – обратный клин; 9 – ребро жесткости; 10 – опорный уголок

Кирпичные пилястры могут усиливаться с помощью стальных или железобетонных обойм (рис.46).

Рис. 46. Усиление пилястр стальными (а) или железобетонными (б) обоймами

1 – стальные уголки; 2 – соединительные планки (хомуты); 3 – упорная шайба 10-12 мм; 4 – болт диаметром 18-22 мм; 5 – зачеканка цементным раствором; 6 – хомут диаметром 18-22 мм; 7 – арматурная сетка; 8 – бетон; 9 – бетонные сухарики

Железобетонная обойма выполняется из бетона класса В 12,5 и выше с армированием вертикальными стержнями и хомутами. Расстояние между хомутами должно быть не более 150 мм.

Ткачев Сергей

Обследование каменных и армокаменных конструкций выполняется с учетом требований СНиП 11-22-81 «Каменные и армокаменные конструкции», а также «Рекомендаций по усилению каменных конструкций зданий и сооружений».

Перед обследованием каменных конструкций необходимо выявить их структуру, выделив несущие элементы. Особенно важно учесть реальные размеры несущих элементов, расчетную схему, оценить величины деформаций и разрушений, выявить условия опирания на каменную конструкцию балок, плит и других изгибаемых элементов, состояние арматуры (в армокаменных конструкциях) и закладных деталей. От названных выше условий напрямую зависят размеры и характер дефектов, наличие типичных разрушений (сколы и трещины).

Для определения прочности каменной кладки применяют инструменты и приборы механического действия, а также ультразвуковые приборы. Молотками и зубилами путем ряда ударов можно приближенно оценить качественное состояние материала каменных и бетонных конструкций. Более точные данные получают с помощью специальных молотков, т. е. приборов механического действия, основанных на оценке следов или результатов удара по поверхности испытываемой конструкции. Наиболее простой, хотя и менее точный инструмент этого вида- молоток Физделя. На ударном торце молотка впрессован шарик определенного размера. Путем локтевого удара, создающего приблизительно одинаковую силу у разных людей, на исследуемой поверхности остается след-лунка. По величине ее диаметра с. помощью тарировочной таблицы оценивают прочность материала.

Более точным инструментом является молоток Кашкарова, при пользовании которым силу удара шариком по исследуемому материалу учитывают по размеру следа на специальном стержне, расположенном за шариком.

Но наиболее современными и точными приборами механического действия являются пружинные: прибор Академии Коммунального хозяйства РСФСР, Центрального научно-исследовательского института строительных конструкций. Принцип действия этих приборов основан на учете определенной силы удара, вызываемого спуском взведенной пружины. Прибор этого типа представляет собой корпус, в котором помещена спиральная пружина, соединенная со стержнем-ударником. После нажима на спусковой крючок пружина отпускается, и стержень-ударник наносит удар. В приборе ЦНИИСКа силу удара можно установим равной 12,5 или 50 кг/см 2 для каменных материалов различной прочности.

Для определения изгибов и деформаций вертикальных поверхностей, их формы и характера отступлений от вертикальности и плоскости применяют нивелир со специальной насадкой, позволяющей вести визирование, начиная с 0,5 м вместо минимальных 3,5 м, когда насадки нет.

Рельеф вертикальных поверхностей выявляют способом визирования инструмента из одной его стоянки на рейку, прикладываемо горизонтально к заранее намеченным точкам обследуемой поверхности.Результаты измерения деформаций горизонтальных или вертикальных поверхностей наносят на схемы, на которых для наглядности выявляют, наподобие горизонталей, линии равных отклонений от горизонтальной или вертикальной плоскостей. Сечение придают равным 2-5 мм в зависимости от степени отклонения или нарушения положения или местных дефектов обследуемого элемента и его общих размеров.

Однако, в первую очередь, необходимо выяснить характер негативных изменений в кладке и установить стабилизировался ли процесс образования трещин, или их количество и ширина раскрытия нарастают во времени. Для этого в самой кладке устанавливаются маяки. Маяк представляет собой полоску из гипса, стекла или металла, накрывающую обе стороны трещины. Маяки из гипса и стекла в случае продолжения деформации, вызвавшей появление трещин, лопаются.

Приборы для диагностики прочности материала: а - молоток Физделя; б-то же Кашкарова; в - пистолет ЦНИИСКа: 1- калиброванный шарик; 2 - угловой масштаб; 3 - тарировочная таблица; 4- сменный стержень для фиксирования следа удара

Измерение деформаций вертикальной поверхности с помощью нивелира с оптической насадкой: а-план; б- поверхность стены; в - разрез; 1 - нивелир; 2 - рейка; 3 - места прикладывания peйки; 4 - линии равных отклонений от плоскости


Маяки для наблюдения за состоянием трещин: /-трещина; 2-штукатурка и алебастровый раствор; 3- материал стены; 4- маяк гипсовый; 5 - маяк стеклянный; 6 - металлическая пластинка; 7 - риски через 2-3 мм; 8 - гвоздь

Путем измерения величины расхождения половинок маяка устанавливают характер изменения трещины или ее стабилизацию. Металлический маяк прикрепляют к одной стороне трещины, и он может передвигаться по другому ее краю, по другой стороне ее, где фиксируют первоначальное и последующие положения конца маяка. Самым простым маяком является бумажный маячок , представляющий собой полоску бумаги наклеиваемую на трещину, при дальнейшем расширении трещины бумажный маячок разрывается.

Трещины в несущих каменных конструкциях соответствуют стадиям трещинообразования (или стадиям работы кладки при сжатии). При усилиях в кладке F , не превышающих усилия F crc , при котором в кладке появляются трещины, конструкция имеет достаточную для восприятия существующей нагрузки несущую способность, трещины не образуются. При нагрузках F F crc начинается процесс образования трещин. Поскольку кладка плохо сопротивляется растяжению, на растянутых поверхностях (участках) трещины
появляются значительно раньше возможного разрушения конструкции.

В качестве основных причин образования трещин выдeляют:

1) низкое качество кладки (плохие растворные швы, несоблюдение перевязки, забутовка с нарушением технологии и т.п.);

2) недостаточная прочность кирпича и раствора (трещиноватость и криволинейность кирпича, несоблюдение технологии сушки при его изготовлении; высокая подвижность раствора и т.п.);

3) совместное применение в кладке разнородных по прочности и деформативности каменных материалов (например, глиняного кирпича совместно с силикатным или шлакоблоками);

4) использовaниe каменных материалов не по назначению (например, силикатного кирпича в условиях повышенной влажности);

5) низкое качество работ, выполняемых в зимнее время (использование не очищенного от наледи кирпича; применение смерзшегося раствора, отсутствие в растворе противоморозных добавок);

6) невыполнение температурно-усадочных швов или недопустимо большое расстояние между ними;

7) агрессивные воздействия внешней среды (кислотное, щелочное солевое воздействия; попеременное замораживание и оттаивание, увлажнение и высушивание);

8) неравномерная осадка фундамента в здании.

Не случайно осадки фундаментов указаны последним условием возникновения трещин в каменной кладке. Следует иметь в виду, что в период массового строительства в каменной кладке использовались растворы без противоморозных добавок, тощие, непластичные, т.е. очень дешевые. Все это способствовало обильному образованию усадочных трещин, которые необходимо при обследовании отделить от чисто осадочных трещин, имеющих специфический, легко определимый характер.

Рассмотрим процесс образования трещин в каменной кладке при сжатии

Первая стадия — появление первых волосяных трещин в отдельных камнях. Усилие F crc
, при котором появляются трещины на этом этапе, зависит, в основном, от вида используемого в кладке раствора:

— в кладке на цементном растворе F crc = (0,8 — 0,6) F u ; ;

— в кладке на сложном растворе F crc = (0,7 — 0,5) F u ;

— в кладке на известковом растворе F crc = (0,6 — 0,4) F u ,

где F u разрушающее усилие.

Вторая стадия — прорастание и объединение отдельных трещин. Эта стадия начинается и интенсивнее протекает по южному фасаду здания, испытывающему наибольшие температурные колебания атмосферной среды. Кроме того, прорастание трещин наблюдается при неправильной организации наружных водостоков, нарушении их системы в местах периодического намокания кладки.

Третья стадия – дальнейшее образование больших поверхностей разрушения и исчерпание прочности кладки.

На фотографии представлено сооружение с мансардой, опирающейся на внутреннюю поперечную стену. На свободной части кровли был создан уклон под организаванную систему наружного водостока, однако угол здания значительно промачивается. Стрелка показывает на развивающуюся трещину, появившуюся после одного года эксплуатации реконструированного сооружения

Дефекты кирпичной кладки и их причины:

а-износ от 20 до 40%; б-износ 41-60%; в- перегруженные простенки с износом до 40%; г- то же, при большем износе; д - обнажение кирпичной кладки при износе штукатурки

Анализируя картину трещин, следует помнить, что появление отдельных трещин в перевязочных камнях свидетельствует о перенапряжении в каменной кладке. Развитие трещин во второй стадии указывает на значительное перенапряжение кладки и необходимость ее разгрузки или усиления.

При образовании больших поверхностей разрушения целесообразна замена кладки на новую или ее усиление конструкцией, полностью воспринимающей эксплуатационную нагрузку.

В процессе эксплуатации сооружения могут раскрыться трещины из-за неправомерно большой длины температурного блока или из-за отсутствия температурно-усадочного шва вообще. В период реконструкции с возведением эркеров, навешиванием лифтов, устройством дополнительных и мансардных этажей в кладке могут появиться трещины из-за недостаточной площади опирания перемычек на стену и низкой прочности каменной кладки, от перегрузки простенка и низкой прочности каменной кладки. Возможны и другие причины трещинообразования. Например, хаотично расположенные трещины часто возникают в сооружениях, оказавшихся в непосредственной близости от места забивания свай, или в старых зданиях, износ кирпичной кладки которых достигает 40% и более.

Прочность кирпича и камней необходимо определять в соответствии с требованиями ГОСТ 8462-85, раствора — ГОСТ 5802-86 или СН 290-74. Плотность и влажность каменных кладок определяют в cooтветствии с ГОСТ 6427-75, 12730.2-78 путем установления разницы веса образцов до и после высушивания. Морозостойкость каменных материалов и растворов, а также их водопоглощение устанавливают по ГОСТ 7025-78.

Отбор образцов для испытаний производят из малонагруженных элементов конструкций при условии идентичности применяемых на этих участках материалов. Образцы кирпичей или камней должны быть целыми без трещин. Из камней неправильной формы выпиливают кубики размером ребра от 40 до 200 мм или высверливают цилиндры (керны) диаметром от 40 до 150 мм . Для испытаний растворов изготовляют кубы с ребром от 20 до 40 мм , составленные из двух пластин paствора, склеенных гипсовым раствором. Образцы испытывают на сжатие с использованием стандартного лабораторного оборудования. Участки кирпичной (каменной) кладки, с которых отбирали образцы для испытаний, должны быть полностью восстановлены для обеспечения исходной конструкции.

Технология восстановления и усиления кирпичной кладки

Как уже было отмечено выше, кирпичные корпуса жилых зданий массовых серий имели высокую надежность и значительный запас прочности. Но длительный срок эксплуатации, нарушения технических условий содержания могли нанести несущим кирпичным стенам значительный ущерб. В зависимости от видимых повреждений и состояния конструкций, нагрузок, действующих на них, других факторов, затрудняющих нормальную эксплуатацию, при реконструкции предпринимаются мероприятия по восстановлению несущей способности кирпичной кладки. Кроме того, при повышении этажности сооружения или иному увеличению строительного объема сооружения возникает необходимость в усилении кирпичных конструкций.

Восстановление несущей способности кладки сводится к заделке и локализации трещин. Естественно, что указанную задачу необходимо решать после выявления и устранения причин, вызвавших трещинообразование :

1) ликвидировать или стабилизировать неравномерные осадки фундамента путем усиления фундаментов или оснований;

2) изменить условия передачи нагрузки на треснувший простенок с целью перераспределения нагрузки на большую площадь;

3) перераспределить нагрузки на другие (или даже дополнительные) конструкции в случае недостаточной прочности самой кладки.

Следует отметить, что заделка трещин должна сопровождать и мероприятия по усилению кирпичных конструкций , которые необходимы при увеличении нагрузок и невозможности их перераспределения на другие элементы сооружения.

Технологически заделка трещин в кирпичных стенах может производиться одним из следующих способов или их сочетанием.

Инъектирование трещин — нагнетание в трещины поврежденной кладки растворов жидкого цемента или полимер-цементного раствора, битума, смолы. Этот способ восстановления несущей способности кладки применяется в зависимости от вида конструкции, характера ее дальнейшего использования, имеющихся возможностей инъектирования, а главное, при локальном характере и небольшом раскрытии трещины. Оно может осуществляться с использованием различных материалов. В зависимости от их вида различают силикатизацию, битумизацию, смолизацию и цементацию . Инъектирование позволяет не только замонолитить кладку, но и восстановить, а в ряде случаев и увеличить ее несущую способность, что происходит без увеличения поперечных размеров конструкции.

Наиболее широко применяемы цементные и полимер-цементные растворы. Для обеспечения эффективности инъектирования применяют портландцемент марки не менее 400 с тонкостью помола не менее 2400 см 2 /г , с густотой цементного теста 22 — 25%, а также шлакопортландцемент марки 400 с небольшой вязкостью в разжиженных растворах. Песок для раствора применяют мелкий с модулем крупности 1,0 — 1,5 или тонкомолотый с тонкостью помола, равной 2000-2200 см 2 /г. Для повышения пластичности состава в раствор добавляются пластифицирующие добавки в виде нитрита натрия (5% от массы цемента), поливинилацетатную эмульсию ПВА с полимерцементным отношением П/Ц=0,6 или нафталиноформальдегидную добавку в количестве 0,1% от массы цемента.

К инъекционным растворам предъявляют достаточно жесткие требования: малое водоотделение, необходимая вязкость, требуемая прочность на сжатие и сцепление, незначительная усадка, высокая морозостойкость.

При небольших трещинах в кладке (до 1,5 мм ) применяют полимерные растворы на основе эпоксидной смолы (эпоксидная ЭД-20 (или ЭД-16) — 100 мас.ч .; модификатор МГФ-9 — 30 мас.ч .; отвердитель ПЭПА – 15 мас.ч.; тонкомолотый песок – 50 мас.ч), а также цементно-песчаные растворы с добавкой тонкомолотого песка (цемент – 1 мас.ч.; суперпластификатор нафталиноформальдегид – 0,1 мас.ч.; песок – 0,25 мас.ч.; водоцементное отношение – 0,6).

При более значительном раскрытии трещин применяют цементно-полимерные растворы состава 1:0,15:0,3 (цемент; полимер ПВА; песок) или 1:0,05:0,3 (цемент: пластификатор нитрит натрия: песок), В/Ц=0,6, модуль крупности песка М к =1. Раствор нагнетается под давлением до 0,6 МПа. Плотность заполнения трещин определяется через 28 суток после инъектирования.

Раствор нагнетается через инъекторы диаметром 20-25 мм. Их устанавливают в специально просверленные отверстия через 0,8-1,5 метра по длине трещины. Диаметр отверстий должен обеспечить установку трубки инъектора на цементном растворе. Глубина отверстий – не более 100 мм , трубка инъектора закрепляется в отверстии проконопаченной паклей.


Инъектирование трещин шириной до 10 мм цементно-песчаным раствором:

1- кладка; 2- трещина; 3- отверстия для инъекторов через 800-1500 мм; 4- стальная трубка инъектора; 5- пакля, проконопаченная на клею; 6- подача раствора

Установка скоб из арматурной стали используется в методиках восстановления несущей способности кладки при раскрытии трещин более 10 мм . Для этого в кладке фрезой делается углубление по размеру скобы. Скоба закрепляется болтами по краям, сама трещина обычно инъектируется цементно-песчаным раствором и зачеканивается жестким раствором.

Установка скоб из арматурной стали: 1-усиливаемая стена; 2-трещина в стене, инъектированная цементно-песчаным раствором после установки скоб; 3-скобы из арматурной стали; 4-паз в кладке, выбранный фрезой; 5-углубления по концам паза, выполненные сверлом; 6-заполнение цементно-песчаным раствором пазов и углублений

При значительных повреждениях кладки сетью трещин скобы выполняют двухсторонними, в этом случае кладка испытывает двухстороннее обжатие. Развитие многочисленных сквозных трещин можно остановить, используя вместо скобы накладки из полосовой стали , которые устанавливаются с шагом 1,5-2 толщины стены.

Двухсторонние скобы из арматурной стали на болтах: 1- кладка; 2- сквозная трещина; 3- накладки из полосовой стали; 4- стяжные болты; 5- отверстия в стене

Разрушения могут быть настолько значительны, что в некоторых случаях требуется частичная разборка и перекладка разрушенной кирпичной кладки. Как правило, это производится с устройством вставки кирпичных замков, снабженных якорем .

Широкая, более 10 мм, трещина (1 ) перехватывается одно- или двухсторонней накладкой (2) , принимаемой уже не из полосовой стали, а из прокатного металла, который крепится к стене анкерными болтами. В этом случае накладка именуется якорем .

По всей длине развития трещины извлекается поврежденный кирпич на толщину в два кирпича и заменяется армированной кладкой на цементно-песчаном растворе, именуемой кирпичным замком (3-4 ).

Частичное или полное заполнение проемов кладкой: 1- усиливаемый простенок; 2- оконные проемы; 3- армированная кладка из кирпича марки М75-100 на растворе М50-75; 4- шов, расклиниваемый металлической пластиной и зачеканиваемый цементно-песчаным раствором

Схема разгруэки кирпичных простенков: 1 -перемыbr /чка-, 2-доски 50-60 мм; 3- стойки диамером более 20 см; 4 -деревянные клинья; 5- временное крепление стоек

Повышение несущей способности и устойчивости простенков может быть обеспечено увеличением площади сечения , устройством различных обойм или металлического каркаса .

Повышение площади сечения простенка достигают увеличением его ширины. В этом случае с двух сторон простенка выкладывают новые участки кладки, которую надежно перевязывают со старой, а при необходимости и армируют. Поврежденные несущие простенки разгружаются, площадь сечения простенков увеличивается, соответственно уменьшается площадь оконных проемов, поэтому оконные блоки подлежат замене.

При опирании на усиливаемый простенок стропильной конструкции или отклонении стены от вертикали на величину более 1/3 толщины кирпича, простенок предварительно разгружают путем подведения временных деревянных или металлических столбов на гипсовых растворах.

Основными способами усиления кирпичной кладки , являются хорошо проверенные способы устройства обойм , наращиваний или рубашек, разделяемые на железобетонные и растворные . При усилении железобетонными обоймами, рубашками и наращиваниями используются бетон класса В10 и арматура класса А1, шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и изменяется в пределах от 4 до 12 см .

Растворные обоймы, рубашки и наращивания , называемые также штукатурными , отличаются от железобетонных тем, что в них используется цементный раствор марки 75-100, которым защищается арматура усиления.

Устройство железобетонной обоймы эффективно при поверхностном разрушении материала простенков и столбов на незначительную глубину или при возникновении глубоких трещин, когда возможно уширение простенков. В первом случае разрушенные участки простенка расчищают на глубину не менее толщины железобетонной обоймы, и сечение простенка в результате ее устройства не меняется. Во втором случае сечение простенка увеличивается за счет устройства железобетонной обоймы.

Технологический процесс устройства железобетонной обоймы простенков состоит из удаления оконных заполнений, расчистки разрушенных участков или вырубки простенка на необходимую глубину, удаления оконных четвертей, установки арматуры, устройства опалубки, бетонирования, ухода за бетоном, снятия опалубки и разборки подмостей. Рабочая арматура железобетонной обоймы может быть предварительно напряжена нагреванием до 100-150° С (например, нагревом электрическим током).

Устройство железобетонных обойм: а-без увеличения сечения простенка; б-с увеличением сечения простенка

Устройство штукатурной предварительно напряженной обоймы: 1-усиливаемая стена; 2-металлические пластины с отверстиями для тяжей; 3-тяжи-связи; 4-отверстия в стене для тяжей; 5-арматурные стержни, приваренные к пластинам и попарно стянутые; 6- штукатурка из цементно-песчаного раствора; 7-арматурные сетки, привязанные к стержням

Вместо арматурных каркасов при усилении возможно применять сетки из проволоки диаметром 4-6 мм с ячейкой 150х150 мм. В обоих случаях армирования и сетки, и каркасы крепятся к усиливаемой поверхности штырями (анкерами).

На больших площадях устанавливаются дополнительные хомуты-связи шагом не более 1 м при средней длине 75 см.

Опалубку железобетонной обоймы наращивают снизу вверх в процессе бетонирования. Для устройства железобетонных обойм используют метод торкретирования, при котором опалубка не требуется. В этом случае на заармированную поверхность простенка наносят под давлением бетонную смесь с помощью цемент-пушки. Преимуществом такого метода устройства железобетонной обоймы является механизация процесса бетонирования. Железобетонная обойма увеличивает несущую способность заключенного в нее элемента в 2-Зраза


Хомуты-связи железобетонной обоймы: 1- усиливаемая поверхность стены; 2- арматура диаметром 10 мм;3- хомуты-связи диаметром 10 мм; 4- отверстия в кладке;5- бетон обоймы; 6- арматурные каркасы

Устройство штукатурной или железобетонной рубашки: 1-усиливаемый простенок; 2-проймы; 3-рубашка штукатурная 30-40 мм или железобетонная толщиной 60-100 мм; 4-арматура диаметром 10 мм; 5-арматура диаметром 12 мм; 6-металлические штыри Устройство железобетонного сердечника: 1-усиливаемый простенок; 2-проемы; 3-стойка (сердечник) из железобетона; 4-ниша, вырубленная в простенке;5-арматурный каркас; 6-бетон

Растворные рубашки и наращивания отличаются от обойм только одним конструктивным признаком – они выполняются односторонними . Рубашка может быть выполнена и не на всю ширину простенка – в виде сердечника.

Иногда стальные обоймы усиления кирпичной кладки на постоянно эксплуатируемых зданиях оставляют без защитного покрытия раствором или бетоном, устраивая металлический каркас усиления.

Усиление простенков металлическим каркасом: а- узкого простенка; б- широкого простенка; 1-кирпичный элемент; 2-стальные уголки; 3-планка;
4-поперечная связь

Устройство накладных поясов из уголков: 1-усиливаемый простенок;

2-уголки накладных поясов; 3-поперечные планки; 4-стяжные болты; 5-штукатурка цементно-песчаным раствором по металлической сетке

Устройство металлического каркаса простенков менее трудоемко и материалоемко, чем устройство железобетонной обоймы, и имеет широкое применение.

Подготовка к устройству металлических каркасов простенков состоит из разгрузки простенков, удаления заполнений оконных проемов и срубки четвертей. При этом методе по углам простенков на всю их высоту устанавливают и плотно подгоняют к простенкам стойки из уголковой стали, которые через 30-50 см по высоте соединяют полосовой сталью, привариваемой к полкам уголков встык. Затем простенок обтягивают проволочной металлической сеткой и оштукатуривают.

Металлический каркас можно накладывать на простенок или втапливать в него заподлицо. Во втором случае перед установкой каркаса срубают углы простенков и пробивают горизонтальные штрабы в местах установки металлических соединительных полос.

После установки каркаса щели между металлическими элементами и простенком тщательно зачеканивают раствором. Если разрушению подверглись и перемычки, опирающиеся на простенок, более эффективным становится усиление простенка подведением стоек из уголков. При этом стойки выполняются несколько длиннее расстояния между перемычкой и полом. Вверху они крепятся к оголенной арматуре перемычек, а в нижней части к накладному поясу из швеллера, монтируемому на корпусе реконструируемого объекта. Стойки выпрямляют попарно струбцинами, таким образом создается предварительное напряжение. Спрямления, надломы, разрезы в полках уголков завариваются.

Усиление углов зданий тоже целесообразно производить при помощи накладок из швеллера длиной 1.5-3 м. Накладки могут размещаться как с наружной, так и с внутренней поверхности стены. С кирпичной кладкой они соединяются с помощью стяжных болтов, устанавливаемых в заранее просверленные отверстия. Стяжные болты располагаются по высоте усиливаемой части кладки через 0,8-1,5 м.

Подведение стоек из уголков: 1-усиливаемый простенок; 2-проемы; 3-стойки из неравнополочных уголков, выгнутые в сторону; 4-линии надлома; 5-закладная деталь; 6-оголенная арматура; 7-сварка; 8-раствор

При возникновении местных деформаций и для предотвращения дальнейшего раскрытия трещин осуществляют путем усиления зон сопряжений продольных и поперечных стен здания разгрузочных балок . Paзгрузочные балки устанавливают в ранее пробитые штрабы с одной или двух сторон стены на уровне верха фундамента или перемычек первого этажа.

Двусторонние балки через 2-2,5 м соединяются болтами диаметром l6-20 мм , пропускаемыми через ранее просверленные отверстия в балках и стене. Односторонние балки устанавливают на анкерные болты, гладкие концы которых закрепляют в стене установкой на цементном растворе в ранее просверленные гнезда. Соединения балок на болтах крепят гайками. Шаг анкерных болтов 2-2,5 м .

Щели между полками балок и кирпичной кладкой тщательно зачеканивают цементным раствором состава 1:3. Для изготовления разгрузочных балок используют швеллер или двутавр № 20-27. В местах разрыва стен на трещины на каждом этаже устанавливают скобы-стяжки из Обрезков проката длиной не менее 2 м. Перед установкой скобы-стяжки для нее в стене вырубают штрабу с таким расчетом, чтобы стяжку установить заподлицо с поверхностью кирпичной стены. В стене и в стяжке по разметке просверливают отверстия для болтов 20- 22 мм , с помощью которых скобу-стяжку крепят к стене. Расстояние от трещины до места установки болта должно быть не менее 70 см . Перед установкой скобу-стяжку обматывают проволочной сеткой или проволокой1-2 мм . После установки конструкции трещину и штрабу тщательно заделывают раствором марки М100.


Установка металлических накладок (каркаса) при армировании здания: 1-деформированное здание; 2-трещины в стенах здания; 3-накладки из швеллеров или из металлических пластин; 5-стяжные болты; 6-штраба для установки пластин, заделываемая раствором; 7-отверстия в стенах для болтов, после установки болтов зачеканивается раствором

Как правило, развитие трещин , связанных с неравномерной осадкой фундаментов , требует дополнительных мер не только по повышению несущей способности кладки, но жесткости всего сооружения в целом. Грубые нарушение технологии каменной кладки, недопустимые условия эксплуатации сооружения, как и в случае неравномерной осадки фундаментов, вызывают не только развитие трещин у оконных и дверных проемов, но и нарушения вертикальности ограждающих конструкций.

В местах отрыва наружных стен от внутренних для восстановления жесткости здания устанавливают связи из металлических каркасов или железобетонных шпонок . В этом случае говорят, что здание армируется.

Однако чаще всего, после устранения причин неравномерной осадки фундамента, здание нуждается в стягивании корпуса в целом. Пожалуй, единственным способом такого стягивания является создание напряженных поясов .

Устройство наружных напряженных поясов: 1-деформированное здание; 2-стальные тяжи; 3-прокатный профиль из уголка № 150; 4-стяжные муфты; 5-сварный шов; 6- трещины в стенах здания; 7-штраба в стене для заполненная цементно-песчаным раствором

Здесь следует подчеркнуть, что наиболее часто встречающейся ошибкой усиления корпуса кирпичных зданий с жесткой конструктивной схемой является создание вертикальных дисков жесткости (закладывание или уменьшение площади оконных проемов, устройство вертикальных металлических каркасов и т.п.), в то время как здесь наиболее важен горизонтальный диск жесткости . Напряженный пояс, называемый также «бандаж», принимается из арматурных стержней диаметром 20-40 мм , соединенных стяжными муфтами.

В редких случаях вместо арматуры используется стальной прокат. В результате получается усиливающий элемент, воспринимающий как растягивающие, так и сжимающие усилия, называемый связью-распоркой . Связи-распорки устанавливаются в уровне покрытия и в уровне междуэтажных перекрытий, они могут располагаться как с наружной, так и с внутренней стороны сооружения.

Устройство внутренних напряженных поясов: 1-деформационное здание; 2-стальные тяжи с гайками; 3-металлические пластины; 4-стяжные муфты; 5-отверстия в стенах, которые заделываются раствором после упаковки тяжей; 6-трещины в стенах здания

Усиление междуэтажных перекрытий жилых домов серии 1-447 определяется по наличию коротких трещин и раздроблению кирпичного камня в местах опирания плит перекрытия. Основной причиной разрушения обычно бывает недостаточная площадь опирания плиты перекрытия или отсутствие распределительной подушки.

Наиболее эффективной методикой усиления является технология монтажа стальных тяг и связей-распорок под плитой перекрытия, поскольку, как уже отмечалось, создание горизонтального диска жесткости в зданиях такого типа имеет превалирующее значение. Однако это весьма дорогой и многодельный способ, он возможен лишь при полной реконструкции с расселением жильцов. Поэтому стараются выполнить локальное усиление поврежденных конструкций.

Локальное усиление, в зависимости от вида плит перекрытия, при частичной или поэтапной реконструкции осуществляется путем:

увеличения площади опирания балки при помощи металлических или железобетонных стоек, усилие от которых передается вне зоны разрушения;

-увеличения площади опирания плиты посредством пояса, закрепленного в зоне разрушения кладки;

-устройства под концом плит перекрытия железобетонной подушки.

Расчет кирпичных элементов, усиленных армированием и обоймами

Продольное армирование , предназначенное для восприятия растягивающих усилий во внецентренно сжатых элементах (при больших эксцентриситетах), в изгибаемых и растянутых элементах, в усилениии кирпичной кладки при реконструкции встречается достаточно редко, поэтому в данном разделе не рассматривается. Однако с ростом сейсмической опасности некоторых районов центральной России вследствие подземных выработок и других антропогенных факторов, а также при прокладке железнодорожных и автомобильных магистралей вблизи жилых кварталов, продольное армирование применяется при облицовке тонких (до 51 см) кирпичных стен реконструируемых зданий.

Сетчатое армирование участков кладки существенно повышает несущую способность усиливаемых элементов каменных конструкций (столбов, простенков и отдельных участков стен). Эффективность сетчатого армирования при усилении определяется тем, что арматурные сетки, укладываемые в горизонтальные швы участков кладки, препятствуют ее поперечному расширению при продольных деформациях, вызываемых действующими нагрузками, и благодаря этому повышают несущую способность тела кладки в целом.

Сетчатое армирование применяется для усиления кладки из кирпича всех видов, а также из керамических камней со щелевидными вертикальными пустотами при высоте ряда не более 150 мм. Усиление сетчатым армированием кладки из бетонных и природных камней с высотой ряда более 150 мм мало эффективно.

Для кладки с сетчатым армированием применяются растворы марки 50 и выше. Сетчатое армирование применяется только при гибкостях или , а также при эксцентрицитетах, находящихся в пределах ядра сечения (для прямоугольных сечений e 0 <0,33 y). При больших значениях гибкостей и эксцентрицитетов сетчатое армирование не повышает прочности кладки.

Например, требуется определить сечение продольной арматуры для кирпичного столба 51 х 64 см, высотой 4,5 м. Столб выложен из обыкновенного глиняного кирпича пластического прессования марки 100 на растворе марки 50 . В среднем сечении столба действует приведенная расчетная продольная сила N п =25 т , приложенная с эксцентриситетом е о = 25 см в направлении стороны сечения, имеющей размер 64 см.

Столб армируем продольной арматурой, расположенной в pастянутой зоне снаружи кладки. Сжатую зону поперечного сечения столба армируем конструктивно, так как при наружном расположении aрматуры потребуется частая установка хомутов, предотвращающих выпучивание сжатой арматуры, что потребует дополнительного pacxода стали. Установка конструктивной арматуры в сжатой зоне является обязательной, так как она необходима для крепления хомутов.

Площадь поперечного сечения столба F=51 х 64 = 3260 см 2 . R=l5 кгс/см 2 (при F > 0,3 м 2 ). Расчетное сопротивление продольной арматуры из стали класса А-1 R a =l900 кгс/см 2 .

Растянутую арматуру принимаем из четырех стержней диаметром 10 мм F a =3,14 см 2 .

Определяем высоту сжатой зоны сечения х при h 0 =65 см, е=58 см и Ь=51 см:

1,25-15-51 х (58-65+ )-1900 -3,14-58 = 0,

а из полученного квадратного уравнения определяем х= 35 см < 0,55h o =36 см.

Так как условие удовлетворено, то несущую способноcть сечения определяем по при =1000:

пр = = =7

отсюда = 0,94.

Несущая способность сечения

0,94(1,25 x 15 x 51 x 35-1900 x 3,14) =25,6 т >N п =25 т.

Таким образом, при принятом сечении арматуры, несущая способность столба достаточна.

Комплексные конструкции выполняются из каменной кладки, усиленной железобетоном, работающим совместно с кладкой. Железобетон рекомендуется при этом располагать с внешней стороны кладки, что позволяет проверить качество уложенного бетона, марку которого следует принимать равной 100-150.

Комплексные конструкции применяются в тех же случаях, что и кладка с продольным армированием. Кроме того, их целесообразно применять, также как и сетчатое армирование, для усиления тяжело нагруженных элементов при осевом или внецентренном сжатии с небольшими эксцентрицитетами. Применение в этом случае комплексных конструкций позволяет резко уменьшить размеры поперечных сечении стен и столбов.

Элементы, усиленные обоймами применяются для усиления столбов и простенков, имеющих квадратное или прямоугольное поперечное сечение с соотношением размеров сторон не более 2,5. Необходимость такого усиления возникает, например, при надстройке существующих зданий. Иногда требуется yсилить кладку, имеющую трещины или другие дефекты (недостаточная прочность примененных материалов, низкое качество кладки, физический износ и т. п.)

Обоймы, также как и сетчатое армирование, уменьшают поперечные деформации кладки и благодаря этому повышают ее несущую cпособность. Кроме того, сама обойма также воспринимает часть нагрузки.

В предыдущих разделах были рассмотрены три вида обойм: стальные, железобетонные и армированные штукатурные.

Расчет элементов из кирпичной кладки, усиленной обоймами, при центральном и внецентренном сжатии при малых эксцентрицитетах (не выходящих за пределы ядра сечения) производится по формулам:

при стальной обойме

N n [(m к R + ) F+R а F а ];

при железобетонной обойме

N n [(m к R + ) F+m б R пр F б +R а F а ];

при армированной штукарной обойме

N (m R + ) F.

Величины коэффициентов и принимаются:

при центральном сжатии =1 и =1;

при внецентренном сжатии (по аналогии с внецентренно сжатыми элементами с сетчатым армированием)

1 — , где

N п - приведенная продольная сила; F- площадь сечения кладки;

F а -площадь сечения продольных уголков стальной обоймы, устанавливаемых на растворе, или продольной арматуры железобетонной обоймы;

f б - площадь сечения бетона обоймы, заключенная между хомутами и кладкой (без учета защитного слоя);

R a - расчетное сопротивление поперечной или продольной арматуры обоймы;

- коэффициент продольного изгиба, при определении значение а принимается как для неусиленной кладки;

т к - коэффициент условий работы кладки; для кладки без повреждений т к =1; для кладки с трещинами т к =0,7;

т б - коэффициент условий работы бетона; при передаче нагрузки на обойму с двух сторон (снизу и сверху) т б
=1; при передаче нагрузки на обойму с одной стороны (снизу или сверху) т б =0,7; без непосредственной передачи нагрузки на обойму т б =0,35.

— процент армирования, определяемый по формуле

x 100,

где f x -сечение хомута или поперечной планки;

h и b- размеры сторон усиливаемого элемента;

s- расстояние между осями поперечных планок при стальных обоймах (hs b, но не более 50 см.) или между хомутами при железобетонных и армированных штукатурных обоймах (s15 см).

Например, в среднем сечении простенка размером 51х90 см, расположенного в первом этаже здания, после окончания строительства надстройки будет действовать расчетная продольная сила N n =60 т, приложенная с эксцентриситетом е о = 5 см, направленным в сторону внутренней грани стены. Простенок выложен из силикатного кирпича марки 125 на растворе марки 25. Высота стены (от уровня пола до низа сборного железобетонного перекрытия) составляет 5 м. Требуется проверить несущую способность простенка.

Сечение простенка F= 51 х 90 = 4590 см 2 > 0,3м 2 .

Расчетное сопротивление кладки R = l4 кгс/см 2 . Расстояние от центра тяжести сечения до его края в сторону эксцентриситета

у = = 25,5 см; = =0,2<0,33,

эксцентриситет находится в пределах ядра сечения. Простенок рассчитываем на внецентренное сжатие с малым эксцентриситетом. Упругая характеристика кладки из силикатного кирпича на растворе марки 25 — = 750.

Приведённая гибкость простенка np == 11,3.

Коэффициент продольного изгиба = 0,85.

Коэффициент , учитывающий влияние эксцентрицитета, = = 0,83.

Определим несущую способность простенка:

0,85 x 14 x 4590 x 0,83 = 45 200 кгс= 60000 кгс.

Так как несущая способность простенка оказалась недостаточной, то усиливаем его обоймой из стальных равнобоких уголков размерами 60х60 мм, d=6 мм. Уголки устанавливаются на растворе в углах про стенка и соединяются между собой планками из полосовой стали сечением 5х35 мм, приваренными к уголкам на расстоянии s=50 см по высоте простенка.

Далее определяем несущую способность усиленного простенка. Коэффициент условий работы кладки т к =1. Расчетное сопротивление стальных планок R a =1500 кгс/см 2 . Площадь сечения планки f x = 0,5х3,5= 1,75 см 2 . Расчетное сопротивление уголков обоймы (нагрузка на уголки не передается) R a =430 кгс/см 2 . Площадь сечения уголков F a =6,91х4=27,6 см 2 . Далее определяем коэффициенты и , =0,83, =1-=0,61 и соответствующий процент армирования: =х100=0,21%

Отсюда несущая способность усиленного простенка составит:

0,83.0,85[(14 +0,61хх)4590+430 х27,6]=63800 кгс > N п =60000 кгс

Несущая способность усиленного простенка достаточна.

Довольно часто для зданий со стенами из кирпича требуется проведение такого комплекса работ, как ремонт либо полное восстановление.

Расшивка швов

Усиление кирпичной кладки при этом может производиться несколькими способами, что зависит от причин деформации, характера повреждений.

Основные причины таких деформаций кроются в следующем:

  • Конструктивные ошибки: недостаточной глубины фундамента здания; неравномерной осадки, появление в стенах напряжений, несоответствие нагрузок действующих расчетным, любые деформации балок и перекрытий; применение теплых растворов; нарушения в пространственной жесткости состава;
  • Плохая эксплуатация: просадка фундамента; переувлажнение стены; выравнивание раствора, при котором он загоняется глубоко в кладку;
  • Ошибки производственные: пробивка проема с нарушениями; боковые выпучивания кладки; неправильное оштукатуривание; некачественная разборка перекрытий; укладка балок без применения распределительных пластин;
  • Проектирование плохого качества: увеличение этажности без проведения всех расчетов; неправильное перераспределение нагрузок; отсутствие разработок по состоянию грунта в местах строительства.

При этом существует множество способов исправления таких деформаций: расшивка швов, перекладка, полное восстановление, усиление перекрытий, балок, опор, повышение и перераспределение несущей способности и многое другое.

Способы и этапы работ по усилению кладки

Расшивка швов

Расшивка швов кирпичной кладки обычно нужна, когда происходит значительное выветривание раствора. Это может сильно ухудшить тепломеханические свойства стены, снизить на пятнадцать процентов несущую способность.

При этом перед началом работ все поврежденные швы промываются при помощи воды, затем они заполняются свежим раствором и разглаживаются. После высыхания можно приступать к окрашиванию.

Усиление перемычек

Достаточно часто требуются работы по разборке либо ремонту старых кирпичных перемычек. Если есть одиночные неглубокие трещины, то их можно просто наполнить раствором под давлением. Однако в случае, когда повреждения достаточно большие и угрожают целостности и безопасности, необходимо провести такие меры, как разборка кирпичных кладок и ее восстановление.

Иногда арочные перекрытия с рядовыми и клинчатыми перемычками просто усиливаются при помощи железобетонных балок, которые устанавливаются методом подвода под сами перемычки.

Усиление прогонов и опор

При появлении трещин под опорами, стойками, прогонами необходимо провести меры по разгрузке до несущей действительной способности самой кладки.

Для этого устанавливают металлические платины либо прокладочные железобетонные плиты, которые принимают часть нагрузки на себя. В отдельных случаях требуется произвести полную разборку и установку новой кладки.

Ремонт ослабленных мест

При наличии на стенах трещин с шириной до 4мм, их можно восстанавливать при помощи нагнетания цементного раствора. При значительных глубоких и сквозных трещинах с раскрытием от 4мм в зоне повреждения производится перекладка этого участка. При этом применяется раствор марки 25 при перевязке со старой неповрежденной кладкой.

Если стена имеет значительную толщину, необходимо проводить работы по полному ее восстановлению (при сквозных больших повреждениях).

Замена некоторых участков

Усиление каменной кладки может потребовать замены довольно сильно деформированных отдельных участков. Это могут быть некоторые места стен, потерявшие несущие способности, а также глубокие трещины и сколы, которые приводят к проседанию участка стены.

Для того чтобы произвести замену, устанавливают временные крепления выше деформированных мест. Поврежденные участки с дефектами перекладываются полностью с использованием раствора марки 100. Кладка осуществляется при полной посадке отдельных кирпичей.

Для перекладки несущих стен без разборки перекрытий устанавливаются многоярусные временные крепления, которые передают нагрузки с деформированных участков. Такие крепления не могут стоять дольше пяти дней.

Перед началом работ необходимо установить разгрузочные балки, которые укладываются со стороны самых слабых участков. Все вертикальные зазоры заливаются при использовании пластичного цементного раствора, а сверху – жестким жирным цементом. Укрепив участки, стоит подождать пока раствор затвердеет. Только потом можно осуществлять отделку.

Усиление простенков

При необходимости усиления кирпичных простенков производятся такие виды работ:

  • Разборка оконных и прочих проемов;
  • Укрепляются временные крепления для наружных лесов;
  • Производится вывешивание вышестоящих перекрытий в том случае, когда ослабление осуществляется на площади больше 25 процентов. При этом перекладываются столбы, простенки, другие элементы, производится необходимый ремонт;
  • Осуществляется разборка кладки, пробивка борозд отбойным молотком, срубка поврежденных участков, которая осуществляется с использованием железобетонной обоймы;
  • Сооружение специального металлического каркаса;
  • Распалубка всех монолитных конструкций;
  • Полная разборка всех установленных временных креплений;
  • Оштукатуривание и последующая окраска простенков.

Также при этом может быть проложена новая кладка толщиной в один кирпич, которая перевязывается со старой кладкой через каждые три-четыре кирпича. При этом перед устройством для надежности конструкции пробиваются специальные борозды.

Полная перекладка простенков

Укрепление кладки при помощи армирующей сетки

При укреплении кирпичной кладки иногда требуется полная перекладка простенков. При этом сначала надо сделать разгрузку простенка, для чего устанавливаются временные крепления и опоры с обеих сторон, под перекрытия, система ригелей и стоек с подносами. После можно приступать к разборке и полной либо частичной перекладке, которая осуществляется на цементном растворе.

Чтобы повысить прочность и несущую способность обычно применяют армировочные проволочные сетки. Также усиление производится при помощи железобетонной обоймы, которая укладывается прямо по кладке. После разборки оконных проемов отбиваются четверти, затем устанавливается арматура, опалубка по периметру проема, производится бетонирование. Для того чтобы улучшить сцепление, пробивают борозды через каждые три-четыре ряда кирпичной кладки. Глубина их различна, все зависит от степени повреждений.

После того, как опалубка снимается, простенки оштукатуривают, для внутренних помещений на поверхность наносится специальный слой теплого раствора прямо по штукатурке.

Также для усиления применяется металлический корсет, для которого срубаются углы и на их месте монтируются вертикальные уголки из металла на всю высоту простенка. Далее по поверхности пробиваются борозды с глубиной в 2см на расстоянии 30-50см. В них укладываются металлические пластины с шириной 4-6см. При этом они привариваются концами к уголкам. На самих уголках навариваются бугорки в шахматном порядке.

В отдельных случаях возможно применение металлической сетки, поверхностью которой после работ штукатурится.

Повышение устойчивости стенок

Усиление кирпичной кладки осуществляется при помощи тяжей из полосовой либо квадратной стали или при помощи стальных швеллеров, которые устанавливаются в стенах через предварительно просверленные отверстия.

После этого по сторонам здания укрепляют вертикальные накладки, стяжку при этом производят затягиванием гаек на концах. Финальное натяжение производят при использовании талрепов, т.е. муфт с внутренней двойной резьбой. Это осуществляется в средней части всей длины стяга, который состоит из двух отдельных частей. Качественная стяжка обеспечивается только тогда, когда нет провесов, а при несильном простукивании они все издают звук высокого тона, очень чистый.

Итоги

После того, как все крепления установлены, отверстия и трещины кирпичной стены тщательно заделывают при помощи приготовленного цементного раствора, перекладывают особо ослабленные места. Все металлические детали крепежа после окончания работ окрашиваются простой масляной краской.