III. Основные формулы

Определение 1

Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^{ -19}$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

Закон Кулона

Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

Замечание 1

В электрическом поле также действуют проводники и диэлектрики.

Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

Силовые линии и электростатика

Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

Основные характеристики силовых линий:

  • не пересекаются;
  • не замкнуты;
  • стабильны;
  • конечное направление совпадает с направлением вектора;
  • начало на $+ q$ или в бесконечности, конец на $– q$;
  • формируются вблизи зарядов (где больше напряжённость);
  • перпендикулярны поверхности основного проводника.

Определение 2

Разность электрических потенциалов или напряжение (Ф или $U$) - это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 - интернет-биржа студенческих работ

Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

Электрическое поле и его напряженность

По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность - напряженность электрического поля.

Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

Разность потенциалов в электростатике

Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

Рисунок 4. Потенциальность электростатического поля. Автор24 - интернет-биржа студенческих работ

Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q . В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными .

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом . Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е ; 1,7е ; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q 1 и q 2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны , отрицательно заряженные электроны и нейтральные частицы – нейтроны . Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

m e = 9,11∙10 –31 кг.

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

k = 9∙10 9 м/Ф.

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε 0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε .

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля E .

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии . Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

  • Силовые линии электростатического поля никогда не пересекаются.
  • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
  • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
  • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
  • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q , внесённый в однородное поле с напряжённостью E , действует одинаковая по величине и направлению сила, равная F = Eq . Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Положительных и отрицательных точечных зарядов изображены на рисунке:

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q : если Q > 0, то вектор напряженности направлен от заряда, если Q < 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму :

  1. Нарисовать рисунок.
  2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.
  3. Вычислить каждую из напряжённостей по соответствующей формуле.
  4. Сложить вектора напряжённостей геометрически (т.е. векторно).

Потенциальная энергия взаимодействия зарядов

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

Потенциал. Разность потенциалов. Напряжение

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал - скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r R (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности . Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

В этих формулах:

  • φ – потенциал электрического поля.
  • φ – разность потенциалов.
  • W – потенциальная энергия заряда во внешнем электрическом поле.
  • A – работа электрического поля по перемещению заряда (зарядов).
  • q – заряд, который перемещают во внешнем электрическом поле.
  • U – напряжение.
  • E – напряженность электрического поля.
  • d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Принцип суперпозиции потенциала

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.

Электрическая емкость. Плоский конденсатор

При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости . Емкостью уединенного проводника называют отношение его заряда к потенциалу:

В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, называются обкладками .

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским . Электрическое поле плоского конденсатора в основном локализовано между пластинами.

Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. может быть рассчитана по формуле:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

Еще раз приведем формулу для заряда конденсатора . Под зарядом конденсатора понимают только заряд его положительной обкладки:

Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU ):

Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

Энергия электрического поля

Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля. На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

Соединения конденсаторов

Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

Напряжение равно сумме напряжений на отдельных конденсаторах.

Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

Для N одинаковых последовательно соединённых конденсаторов:

Проводящая сфера

Напряженность поля внутри заряженного проводника равна нулю. В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

Радиуса R :

Если шар окружен диэлектриком, то:

Свойства проводника в электрическом поле

  1. Внутри проводника напряженность поля всегда равна нулю.
  2. Потенциал внутри проводника во всех точках одинаков и равен потенциалу поверхности проводника. Когда в задаче говорят, что «проводник заряжен до потенциала … В», то имеют в виду именно потенциал поверхности.
  3. Снаружи от проводника вблизи от его поверхности напряженность поля всегда перпендикулярна поверхности.
  4. Если проводнику сообщить заряд, то он весь распределится по очень тонкому слою вблизи поверхности проводника (обычно говорят, что весь заряд проводника распределяется на его поверхности). Это легко объясняется: дело в том, что сообщая заряд телу, мы передаем ему носители заряда одного знака, т.е. одноименные заряды, которые отталкиваются. А значит они будут стремиться разбежаться друг от друга на максимальное расстояние из всех возможных, т.е. скопятся у самых краев проводника. Как следствие, если из проводника удалить сердцевину, то его электростатические свойства никак не изменятся.
  5. Снаружи проводника напряженность поля тем больше, чем кривее поверхность проводника. Максимальное значение напряженности достигается вблизи остриев и резких изломов поверхности проводника.

Замечания к решению сложных задач

1. Заземление чего-либо означает соединение проводником данного объекта с Землей. При этом потенциалы Земли и имеющегося объекта выравниваются, а необходимые для этого заряды перебегают по проводнику с Земли на объект либо наоборот. При этом нужно учитывать несколько факторов, которые следуют из того, что Земля несоизмеримо больше любого объекта находящегося не ней:

  • Общий заряд Земли условно равен нолю, поэтому ее потенциал также равен нолю, и он останется равным нолю после соединения объекта с Землей. Одним словом, заземлить – означает обнулить потенциал объекта.
  • Для обнуления потенциала (а значит и собственного заряда объекта, который мог быть до этого как положительным так и отрицательным), объекту придется либо принять либо отдать Земле некоторый (возможно даже очень большой) заряд, и Земля всегда сможет обеспечить такую возможность.

2. Еще раз повторимся: расстояние между отталкивающимися телами минимально в тот момент, когда их скорости становятся равны по величине и направлены в одну сторону (относительная скорость зарядов равна нулю). В этот момент потенциальная энергия взаимодействия зарядов максимальна. Расстояние между притягивающимися телами максимально, также в момент равенства скоростей, направленных в одну сторону.

3. Если в задаче имеется система, состоящая из большого количества зарядов, то необходимо рассматривать и расписывать силы, действующие на заряд, который не находится в центре симметрии.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    где F - модуль силы взаимодействия двух точечных зарядов величиной q 1 и q 2 , r - расстояние между зарядами, - диэлек- трическая проницаемость среды, 0 - диэлектрическая постоянная.

      Напряженность электрического поля

    где - сила, действующая на точечный заряд q 0 , помещенный в данную точку поля.

      Напряженность поля точечного заряда (по модулю)

    где r - расстояние от заряда q до точки, в которой определяется напряженность.

      Напряженность поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей)

    где - напряженность в данной точке поля, создаваемого i-тым зарядом.

      Модуль напряженностиполя, создаваемого бесконечной равномерно заряженной плоскостью:

    где
    - поверхностная плотность заряда.

      Модуль напряженности поля плоского конденсатора в средней его части

    .

    Формула справедлива, если расстояние между пластинами много меньше линейных размеров пластин конденсатора.

      Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от нити или оси цилиндра по модулю:

    ,

    где
    - линейная плотность заряда.

    а) через произвольную поверхность, помещенную в неоднородное поле

    ,

    где - угол между вектором напряженности и нормалью к элементу поверхности, dS - площадь элемента поверхности, E n - проекция вектора напряженности на нормаль;

    б) через плоскую поверхность, помещенную в однородное электрическое поле:

    ,

    в)через замкнутую поверхность:

    ,

    где интегрирование ведется по всей поверхности.

      Теорема Гаусса. Поток вектора напряженности через любую замкнутую поверхность S равен алгебраической сумме зарядов q 1 , q 2 ... q n , охватываемых этой поверхностью, деленной на 0 .

    .

    Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

    а) поток сквозь плоскую поверхность, если поле однородно

    б) в случае неоднородного поля и произвольной поверхности

    ,

    где D n - проекция вектора на направление нормали к элементу поверхности, площадь которой равна dS .

      Теорема Гаусса. Поток вектора электрической индукции сквозь замкнутую поверхность S , охватывающую заряды q 1 , q 2 ... q n , равен

    ,

    где n - число зарядов, заключенных внутри замкнутой поверхности (заряды со своим знаком).

      Потенциальная энергия системы двух точечных зарядов Q и q при условии, что W  = 0, находится по формуле:

    W =
    ,

    где r - расстояние между зарядами. Потенциальная энергия положительна при взаимодействии одноименных зарядов и отрицательна при взаимодействии разноименных.

      Потенциал электрического поля, созданного точечным зарядом Q на расстоянии r

     =
    ,

      Потенциал электрического поля, созданного металлической сферой радиуса R , несущей заряд Q :

     =
    (r ≤ R ; поле внутри и на поверхности сферы),

     =
    (r > R ; поле вне сферы).

      Потенциал электрического поля, созданного системой n точечных зарядов в соответствии с принципом суперпозиции электрических полей равен алгебраической сумме потенциалов 1 , 2 ,…, n , создаваемых зарядами q 1 , q 2 , ..., q n в данной точке поля

    = .

      Связь потенциалов с напряженностью:

    а) в общем случае = -qrad или =
    ;

    б) в случае однородного поля

    Е =
    ,

    где d - расстояние между эквипотенциальными поверхностями с потенциалами 1 и 2 вдоль силовой линии;

    в) в случае поля, обладающего центральной или осевой симметрией

    где производная берется вдоль силовой линии.

      Работа, совершаемая силами поля по перемещению заряда q из точки 1 в точку 2

    A = q ( 1 - 2 ),

    где ( 1 - 2 ) - разность потенциалов начальной и конечной точек поля.

      Разность потенциалов и напряженность электрического поля связаны соотношениями

    ( 1 - 2 ) =
    ,

    где Е е - проекция вектора напряженности на направление перемещения dl .

      Электроемкость уединенного проводника определяется отношением заряда q на проводнике к потенциалу проводника .

    .

      Электроемкость конденсатора:

    ,

    где ( 1 - 2 ) = U - разность потенциалов (напряжение) между обкладками конденсатора; q - модуль заряда на одной обкладке конденсатора.

      Электроемкость проводящего шара (сферы) в СИ

    с = 4 0 R ,

    где R - радиус шара, - относительная диэлектрическая проницаемость среды; 0 = 8,8510 -12 Ф/м.

      Электроемкость плоского конденсатора в системе СИ:

    ,

    где S - площадь одной пластины; d - расстояние между обкладками.

      Электроемкость сферического конденсатора (две концентри- ческие сферы радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком, с диэлектрической проницаемость ):

    .

      Электроемкость цилиндрического конденсатора (два коакси-альных цилиндра длиной l и радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью )

    .

      Емкость батареи из n конденсаторов, соединенных после- довательно, определяется соотношением

    .

    Последние две формулы применимы для определения емкости многослойных конденсаторов. Расположение слоев параллельно пластинам соответствует последовательному соединению однослойных конденсаторов; если же границы слоев перпендикулярны пластинам, то, считают, что имеется параллельное соединение однослойных конденсаторов.

      Потенциальная энергия системы неподвижных точечных зарядов

    .

    Здесь i - потенциал поля, создаваемого в той точке, где находится заряд q i , всеми зарядами, кроме i -го; n - общее число зарядов.

      Объемная плотность энергии электрического поля (энергия, отнесенная к единице объема):

    =
    = = ,

    где D - величина вектора электрического смещения.

      Энергия однородного поля:

    W = V .

      Энергия неоднородного поля:

    W =
    .

    Закон Кулона:

    где F – сила электростатического взаимодействия между двумя заряженными телами;

    q 1 , q 2 – электрические заряды тел;

    ε – относительная, диэлектрическая проницаемость среды;

    ε 0 =8,85·10 -12 Ф/м – электрическая постоянная;

    r – расстояние между двумя заряженными телами.

    Линейная плотность заряда:

    где dq – элементарныйзаряд, приходящийся на участок длины dl.

    Поверхностная плотность заряда:

    где dq – элементарныйзаряд, приходящийся на поверхность ds.

    Объемная плотность заряда:

    где dq – элементарныйзаряд, в объеме dV.

    Напряженность электрического поля:

    где F сила действующая на заряд q .

    Теорема Гаусса:

    где Е – напряженность электростатического поля;

    dS вектор, модуль которого равен площади пронизываемой поверхности, а направление совпадает с направлением нормали к площадке;

    q – алгебраическая сумма заключенных внутри поверхности dS зарядов.

    Теорема о циркуляции вектора напряженности:

    Потенциал электростатического поля:

    где W p – потенциальная энергия точечного заряда q .

    Потенциал точечного заряда:

    Напряженность поля точечного заряда:

    .

    Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:

    где τ – линейная плотность заряда;

    r – расстояние от нити или оси цилиндра до точки, напряженность поля в которой определяется.

    Напряженность поля, создаваемого бесконечной равномерной заряженной плоскостью:

    где σ – поверхностная плотность заряда.

    Связь потенциала с напряженностью в общем случае:

    E= – gradφ= .

    Связь потенциала с напряженностью в случае однородного поля:

    E = ,

    где d – расстояние между точками с потенциалами φ 1 и φ 2 .

    Связь потенциала с напряженностью в случае поля, обладающего центральной или осевой симметрией:

    Работа сил поля по перемещению заряда q из точки поля с потенциалом φ 1 в точку с потенциалом φ 2:

    A=q(φ 1 – φ 2).

    Электроемкость проводника:

    где q – заряд проводника;

    φ – потенциал проводника при условии, что в бесконечности потенциал проводника принимается равным нулю.

    Электроемкость конденсатора:

    где q – заряд конденсатора;

    U – разность потенциалов между пластинами конденсатора.

    Электроемкость плоского конденсатора:

    где ε – диэлектрическая проницаемость диэлектрика, расположенного между пластинами;

    d – расстояние между пластинами;

    S – суммарная площадь пластин.

    Электроемкость батареи конденсаторов:

    б) при параллельном соединении:

    Энергия заряженного конденсатора:

    ,

    где q – заряд конденсатора;

    U – разность потенциалов между пластинами;

    C – электроемкость конденсатора.

    Сила постоянного тока:

    где dq – заряд, протекший через поперечное сечение проводника за время dt .

    Плотность тока:

    где I – сила тока в проводнике;

    S – площадь проводника.

    Закон Ома для участка цепи, не содержащего ЭДС:

    где I – сила тока на участке;

    U

    R – сопротивление участка.

    Закон Ома для участка цепи, содержащего ЭДС:

    где I – сила тока на участке;

    U – напряжение на концах участка;

    R – полное сопротивление участка;

    ε ЭДС источника.

    Закон Ома для замкнутой (полной) цепи:

    где I – сила тока в цепи;

    R – внешнее сопротивление цепи;

    r – внутреннее сопротивление источника;

    ε ЭДС источника.

    Законы Кирхгофа:

    2. ,

    где – алгебраическая сумма сил токов, сходящихся в узле;

    – алгебраическая сумма падений напряжений в контуре;

    – алгебраическая сумма ЭДС в контуре.

    Сопротивление проводника:

    где R – сопротивление проводника;

    ρ – удельное сопротивление проводника;

    l – длина проводника;

    S

    Проводимость проводника:

    где G – проводимость проводника;

    γ – удельная проводимость проводника;

    l – длина проводника;

    S – площадь поперечного сечения проводника.

    Сопротивление системы проводников:

    а) при последовательном соединении:

    а) при параллельном соединении:

    Работа тока:

    ,

    где A – работа тока;

    U – напряжение;

    I – сила тока;

    R – сопротивление;

    t – время.

    Мощность тока:

    .

    Закон Джоуля – Ленца

    где Q – количество выделившейся теплоты.

    Закон Ома в дифференциальной форме:

    j =γE ,

    где j – плотность тока;

    γ – удельная проводимость;

    E – напряженность электрического поля.

    Связь магнитной индукции с напряженность магнитного поля:

    B =μμ 0 H ,

    где B – вектор магнитной индукции;

    μ– магнитная проницаемость;

    H – напряженность магнитного поля.

    Закон Био – Савара – Лапласа:

    ,

    где dB – индукция магнитного поля, создаваемая проводником в некоторой точке;

    μ – магнитная проницаемость;

    μ 0 =4π·10 -7 Гн/м – магнитная постоянная;

    I – сила тока в проводнике;

    dl – элемент проводника;

    r – радиус-вектор, проведенный из элемента dl проводника в точку, в которой определяется индукция магнитного поля.

    Закон полного тока для магнитного поля (теорема о циркуляции вектора B ):

    ,

    где n – число проводников с токами, охватываемых контуром L произвольной формы.

    Магнитная индукция в центре кругового тока:

    где R – радиус кругового витка.

    Магнитная индукция на оси кругового тока:

    ,

    где h – расстояние от центра витка до точки, в которой определяется магнитная индукция.

    Магнитная индукция поля прямого тока:

    где r 0 – расстояние от оси провода до точки, в которой определяется магнитная индукция.

    Магнитная индукция поля соленоида:

    B= μμ 0 nI,

    где n – отношение числа витков соленоида к его длине.

    Сила Ампера:

    dF =I,

    где dF сила Ампера;

    I – сила тока в проводнике;

    dl – длина проводника;

    B – индукция магнитного поля.

    Сила Лоренца:

    F =qE +q [v B ],

    где F – сила Лоренца;

    q – заряд частицы;

    E – напряженность электрического поля;

    v – скорость частицы;

    B – индукция магнитного поля.

    Магнитный поток:

    а) в случае однородного магнитного поля и плоской поверхности:

    Φ=B n S ,

    где Φ –магнитный поток;

    B n – проекция вектора магнитной индукции на вектор нормали;

    S – площадь контура;

    б) в случае неоднородного магнитного поля и произвольной проекции:

    Потокосцепления (полный поток) для тороида и соленоида:

    где Ψ – полный поток;

    N – число витков;

    Φ – магнитный поток, пронизывающий один виток.

    Индуктивность контура:

    Индуктивность соленоида:

    L= μμ 0 n 2 V,

    где L – индуктивность соленоида;

    μ – магнитная проницаемость;

    μ 0 – магнитная постоянная;

    n – отношение числа витков к его длине;

    V – объем соленоида.

    Закон электромагнитной индукции Фарадея:

    где ε i – ЭДС индукции;

    изменение полного потока в единицу времени.

    Работа по перемещению замкнутого контура в магнитном поле:

    A=I ΔΦ,

    где A – работа по перемещению контура;

    I – сила тока в контуре;

    ΔΦ – изменение магнитного потока, пронизывающего контур.

    ЭДС самоиндукции:

    Энергия магнитного поля:

    Объемная плотность энергии магнитного поля:

    ,

    где ω – объемная плотность энергии магнитного поля;

    B – индукция магнитного поля;

    H – напряженность магнитного поля;

    μ – магнитная проницаемость;

    μ 0 – магнитная постоянная.

    3.2. Понятия и определения

    ? Перечислите свойства электрического заряда.

    1. Существуют заряды двух типов – положительные и отрицательные.

    2. Одноименные заряды отталкиваются, разноименные притягиваются.

    3.Заряды обладают свойством дискретности – все кратны наименьшему элементарному.

    4. Заряд инвариантен, его величина не зависит от системы отсчета.

    5. Заряд аддитивен - заряд системы тел равен сумме зарядов всех тел системы.

    6. Полный электрический заряд замкнутой системы есть величина постоянная

    7. Неподвижный заряд – источник электрического поля, движущийся заряд – источник магнитного поля.

    ? Сформулируйте закон Кулона.

    Сила взаимодействия двух точечных неподвижных зарядов пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними. Направлена сила вдоль линии, соединяющей заряды.

    ? Что такое электрическое поле? Напряженность электрического поля? Сформулируйте принцип суперпозиции напряженности электрического поля.

    Электрическое поле – вид материи, связанный с электрическими зарядами и передающий действие одних зарядов на другие. Напряженность – силовая характеристика поля, равная силе, действующий на единичный положительный заряд, помещенный в данную точку поля. Принцип суперпозиции – напряженность поля, создаваемая системой точечных зарядов, равна векторной сумме напряженностей поля каждого заряда.

    ? Что называют силовыми линиями напряженности электростатического поля? Перечислите свойства силовых линий.

    Линия, касательная в каждой точке которых совпадает с направлением вектора напряженности поля называется силовой. Свойства силовые линии – начинаются на положительных, заканчиваются на отрицательных зарядах, не прерываются, не пересекаются друг с другом.

    ? Дайте определение электрического диполя. Поле диполя.

    Система из двух равных по модулю, противоположных по знаку точечных электрических зарядов, расстояние между которыми мало по сравнению с расстоянием до точек, где наблюдается действие этих зарядов.Вектор напряженности имеет направление, противоположное вектору электрического момента диполя (который, в свою очередь, направлен от отрицательного заряда к положительному).

    ? Что такое потенциал электростатического поля? Сформулируйте принцип суперпозиции потенциала.

    Скалярная величина, численно равная отношению потенциальной энергии электрического заряда, помещенного в данную точку поля, к величине этого заряда. Принцип суперпозиции – потенциал системы точечных зарядов в некоторой точке пространства равен алгебраической сумме потенциалов, которые создали бы по отдельности эти заряды в этой же точке пространства.

    ? Какова связь между напряженностью и потенциалом?

    E =- (E -напряженность поля в данной точке поля, j - потенциал в этой точке.)

    ? Определите понятие «поток вектора напряженности электрического поля». Сформулируйте электростатическую теорему Гаусса.

    Для произвольной замкнутой поверхности поток вектора напряженности E электрического поля Ф Е = . Теорема Гаусса:

    = (здесь Q i – заряды, охваченные замкнутой поверхностью). Справедлива для замкнутой поверхности любой формы.

    ? Какие вещества называют проводниками? Как распределены заряды и электростатическое поле в проводнике? Что такое электростатическая индукция?

    Проводники -вещества, в которых под действием электрического поля могут двигаться упорядоченно свободные заряды. Под действием внешнего поля заряды перераспределяются, создавая собственное поле, равное по модулю внешнему и направленное противоположно. Поэтому результирующая напряженность внутри проводника равна 0.

    Электростатическая индукция - вид электризации, при котором под действием внешнего электрического поля происходит перераспределение зарядов между частями данного тела.

    ? Что такое электроемкость уединенного проводника, конденсатора. Как определить емкость плоского кондесатора, батареи конденсаторов, соединенных последовательно, параллельно? Единица измерения электроемкости.

    Уединенный проводник: где С –емкость, q - заряд, j - потенциал. Единица измерения – фарад [Ф ]. (1 Ф – емкость проводника, у которого потенциал возрастает на 1 В при сообщении проводнику заряда 1 Кл).

    Емкость плоского конденсатора . Последовательное соединение: . Параллельное соединение: С общ =С 1 2 +…+С n

    ? Какие вещества называют диэлектриками? Какие типы диэлектриков вы знаете? Что такое поляризация диэлектриков?

    Диэлектрики - вещества, в которых при обычных условиях нет свободных электрических зарядов. Существуют диэлектрики полярные, неполярные, сегнетоэлектрики. Поляризацией называется процесс ориентации диполей под воздействием внешнего электрического поля.

    ? Что такое вектор электрического смещения? Cформулируйте постулат Максвелла.

    Вектор электрического смещения D характеризует электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком распределении в пространстве, какое имеется при наличии диэлектрика. Постулат Максвелла: . Физический смысл – выражает закон создания электрических полей действием зарядов в произвольных средах.

    ? Сформулируйте и поясните граничные условия для электростатического поля.

    При переходе электрического поля через границу раздела двух диэлектрических сред вектор напряженности и смещения скачкообразно меняются по величине и направлению. Соотношения, характеризующие эти изменения, называются граничными условиями. Их 4:

    (3), (4)

    ? Как определяется энергия электростатического поля? Плотность энергии?

    Энергия W= (E- напряженность поля, e-диэлектрическая проницаемость, e 0 -электрическая постоянная, V - объем поля), плотность энергии

    ? Определите понятие «электрический ток». Виды токов. Характеристики электрического тока. Какое условие необходимо для его возникновения и существования?

    Ток - упорядоченное движение заряженных частиц. Виды – ток проводимости, упорядоченное движение свободных зарядов в проводнике, конвекционный – возникает при перемещении в пространстве заряженного макроскопического тела. Для возникновения и существования тока необходимо наличие заряженных частиц, способных перемещаться упорядоченно, и наличие электрического поля, энергия которого восполняясь, расходовалась бы на это упорядоченное движение.

    ? Приведите и поясните уравнение непрерывности. Сформулируйте условие стационарности тока в интегральной и дифференциальной формах.

    Уравнение непрерывности . Выражает в дифференциальной форме закон сохранения заряда. Условие стационарности (постоянства) тока в интегральной форме: и дифференциальной - .

    ? Запишите закон Ома в интегральной и дифференциальной формах.

    Интегральная форма – (I –ток, U - напряжение, R -сопротивление). Дифференциальная форма - (j -плотность тока, g- удельная электрическая проводимость, E - напряженность поля в проводнике).

    ? Что такое сторонние силы? ЭДС?

    Сторонние силы разделяют заряды на положительные и отрицательные. ЭДС- отношение работы по перемещению заряда вдоль всей замкнутой цепи к его величине

    ? Как определяется работа и мощность тока?

    При перемещении заряда q по электрической цепи, на концах которой действует напряжение U , электрическим полем совершается работа , мощность тока (t-время)

    ? Сформулируйте правила Кирхгофа для разветвленных цепей. Какие законы сохранения заложены в правилах Кирхгофа? Сколько независимых уравнений надо составить на основе первого и второго законов Кирхгофа?

    1. Алгебраическая сумма токов, сходящихся в узле, равна 0.

    2. В любом произвольно выбранном замкнутом контуре алгебраическая сумма падений напряжений равна алгебраической сумме ЭДС, встречающихся в этом контуре. Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Число уравнений в сумме должно быть равно числу искомых величин (в систему уравнений должны входить все сопротивления и ЭДС).

    ? Электрический ток в газе. Процессы ионизации и рекомбинации. Понятие о плазме.

    Электрический ток в газах – направленное движение свободных электронов и ионов. При нормальных условиях газы – диэлектрики, проводниками становятся после ионизации. Ионизация – процесс образования ионов путем отделения электронов от молекул газа. Происходит вследствие воздействия внешнего ионизатора – сильного нагрева, рентгеновского или ультрафиолетового облучения, бомбардировки электронами. Рекомбинация – процесс, обратный ионизации. Плазма – представляет собой полностью или частично ионизированный газ, в котором концентрации положительных и отрицательных зарядов равны.

    ? Электрический ток в вакууме. Термоэлектронная эмиссия.

    Носители тока в вакууме – электроны, вылетевшие вследствие эмиссии с поверхности электродов. Термоэлектронная эмиссия – испускание электронов нагретыми металлами.

    ? Что вы знаете о явлении сверхпроводимости?

    Явление, при котором сопротивление некоторых чистых металлов (олово, свинец, алюминий) падает до нуля при температурах, близких к абсолютному нулю.

    ? Что вы знаете об электрическом сопротивлении проводников? Что такое удельное сопротивление, зависимость его от температуры, удельная электрическая проводимость? Что вы знаете о последовательном и параллельном соединении проводников. Что такое шунт, дополнительное сопротивление?

    Сопротивление - величина, прямо пропорциональная длине проводника l и обратно пропорциональная площади S поперечного сечения проводника: (r-удельное сопротивление). Проводимость- величина, обратная сопротивлению. Удельное сопротивление (сопротивление проводника длиной 1 м сечением 1 м 2). Удельное сопротивление зависит от температуры , здесь a - температурный коэффициент, R и R 0 , r и r 0 –сопротивления и удельные сопротивления при t и 0 0 С. Параллельное - , последовательное R=R 1 +R 2 +…+R n . Шунт- резистор, подключаемый параллельно электроизмерительному прибору, для отведения части электрического тока, чтобы расширить пределы измерений.

    ? Магнитное поле. Какие источники могут создавать магнитное поле?

    Магнитное поле – особый вид материи, посредством которой взаимодействуют движущиеся электрические заряды. Причина существования постоянного магнитного поля неподвижный проводник с постоянным электрическим током, или постоянные магниты.

    ? Сформулируйте закон Ампера. Как взаимодействуют проводники, по которым ток течет в одном (противоположном) направлении?

    На проводник с током действует сила Ампера, равная .

    B - магнитная индукция, I- ток в проводнике, Dl –длина участка проводника, a-угол между магнитной индукцией и участком проводника. В одном направлении -притягиваются, в противоположном – отталкиваются.

    ? Дайте определение силы Ампера. Как определить ее направление?

    Это сила, действующая на проводник с током, помещенный в магнитное поле. Направление определяем так: ладонь левой руки располагаем так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца были направлены по току в проводнике. Отогнутый большой палец покажет направление силы Ампера.

    ? Поясните движение заряженных частиц в магнитном поле. Что такое сила Лоренца? Как находится ее направление?

    Движущаяся заряженная частица создает свое собственное магнитное поле. Если ее поместить во внешнее магнитное поле, то взаимодействие полей проявится в возникновении силы, действующей на частицу со стороны внешнего поля – силы Лоренца. Направление – по правилу левой руки. Для положительного заряда- вектор B входит в ладонь левой руки, четыре пальца направлены по движению положительного заряда (вектору скорости), отогнутый большой палец показывает направление силы Лоренца. На отрицательный заряд та же сила действует в обратном направлении.

    (q -заряд, v -скорость, B - индукция, a- угол между направлением скорости и магнитной индукции).

    ? Рамка с током в однородном магнитном поле. Как определяется магнитный момент?

    Магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Вращающий момент определяется формулой: M =p m xB , где p m - вектор магнитного момента рамки с током, равный ISn (ток на площадь поверхности контура, на единичную нормаль к контуру), B -вектор магнитной индукции, количественная характеристика магнитного поля.

    ? Что такое вектор магнитной индукции? Как определить его направление? Как графически изображают магнитное поле?

    Вектор магнитной индукции – это силовая характеристика магнитного поля. Магнитное поле наглядно изображают с помощью силовых линий. В каждой точке поля касательная к силовой линии совпадает с направлением вектора магнитной индукции.

    ? Сформулируйте и поясните закон Био – Савара - Лапласа.

    Закон Био – Савара - Лапласа позволяет рассчитать для проводника с током I магнитную индукцию поля dB , создаваемого в произвольной точке поля dl проводника: (здесь m 0 -магнитная постоянная, m-магнитная проницаемость среды). Направление вектора индукции определяется по правилу правого винта, если поступательное движение винта соответствует направлению тока в элементе.

    ? Сформулируйте принцип суперпозиции для магнитного поля.

    Принцип суперпозиции - магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

    ? Поясните основные характеристики магнитного поля: магнитный поток, циркуляция магнитного поля, магнитная индукция.

    Магнитным потоком Ф через какую-либо поверхность S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла a между векторами B и n (внешней нормалью к поверхности). Циркуляцией вектора B по заданному замкнутому контуру называется интеграл вида , где dl - вектор элементарной длины контура. Теорема о циркуляции вектора B : циркуляция вектора B по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром. Вектор магнитной индукции – это силовая характеристика магнитного поля. Магнитное поле наглядно изображают с помощью силовых линий. В каждой точке поля касательная к силовой линии совпадает с направлением вектора магнитной индукции.

    ? Запишите и прокомментируйте условие соленоидальности магнитного поля интегральной и дифференциальной формах.

    Векторные поля, в которых отсутствуют источники и стоки, называют соленоидальными. Условие соленоидальности магнитного поля в интегральной форме: и дифференциальной форме:

    ? Магнетики. Виды магнетиков. Феромагнетики и их свойства. Что такое гистерезис?

    Вещество является магнетиком, если оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.Намагничивающиеся во внешнем магнитном поле по направлению поля – парамагнетиками. Эти два класса называют слабомагнитными веществами. Сильномагнитные вещества, намагниченные даже при отсутствии внешнего магнитного поля, называют ферромагнетиками. Магнитный гистерезис – различие в значениях намагниченности ферромагнетика при одной и той же напряженности Н намагничивающего поля в зависимости от значения предварительной намагниченности. Такая графическая зависимость называется петлей гистерезиса.

    ? Сформулируйте и поясните закон полного тока в интегральной и дифференциальной формах (основные ур-я магнитостатики в веществе).

    ? Что такое электромагнитная индукция? Сформулируйте и поясните основной закон электромагнитной индукции (закон Фарадея). Сформулируйте правило Ленца.

    Явление возникновения электродвижущей силы (ЭДС индукции) в проводнике, находящемся в переменном магнитном поле или движущемся в постоянном в постоянном магнитном поле называют электромагнитной индукцией. Закон Фарадея: какова бы не была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре ЭДС

    Знак минус определяется правилом Ленца – индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

    ? В чем заключается явление самоиндукции? Что такое индуктивность, единицы измерения? Токи при замыкании и размыкании электрической цепи.

    Возникновение ЭДС индукции в проводящем контуре под действием собственного магнитного поля при его изменении, происходящем в результате изменения в проводнике силы тока. Индуктивность – коэффициент пропорциональности, зависящий от формы и размеров проводника или контура, [Гн]. В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи. Поэтому величина силы тока не может меняться мгновенно (механический аналог – инертность).

    ? Явление взаимной индукции. Коэффициент взаимной индукции.

    Если два неподвижных контура расположены близко друг к другу, то при изменении силы тока в одном контуре, возникает ЭДС в другом контуре. Это явление называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называют взаимной индуктивностью контуров, они равны.

    ? Запишите уравнения Максвелла в интегральной форме. Поясните их физический смысл.

    ; ;

    ; .

    Из теории Максвелла следует, что электрическое и магнитное поле нельзя рассматривать как независимые – изменение во времени одного приводит к изменению другого.

    ? Энергия магнитного поля. Плотность энергии магнитного поля.

    Энергия , L –индуктивность, I – сила тока.

    Плотность , В – магнитная индукция, Н – напряженность магнитного поля, V -объем.

    ? Принцип относительности в электродинамике

    Общие закономерности электромагнитных полей описываются уравнениями Максвелла. В релятивистской электродинамике установлено, что релятивистская инвариантность этих уравнений имеет место только при условии относительности электрических и магнитных полей, т.е. при зависимости характеристик этих полей от выбора инерциальных систем отсчета. В подвижной системе электрическое поле такое же, как в неподвижной, но в подвижной системе имеется магнитное поле, которого в неподвижной системе нет.

    Колебания и волны