Теплоустановка потапова. Генератор свободной энергии с самозапиткой своими руками

Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.

Устройство и принцип работы

Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.

Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.

В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:

  • Пассивные тангенциальные системы;
  • Пассивные аксиальные системы;
  • Активные устройства.

Теперь рассмотрим каждую из категорий более детально.

Пассивные тангенциальные ВТГ

Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.

Рисунок 1: принципиальная схема пассивного тангенциального генератора

При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.

Пассивные аксиальные теплогенераторы

Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.


Рис. 2: принципиальная схема пассивного аксиального теплогенератора

Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.

Активные теплогенераторы

Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.


Рис. 3: принципиальная схема активного теплогенератора

При вращении активатора в таком происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.

Назначение

На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:

  • Отопления помещений, как в бытовых, так и в производственных зонах;
  • Нагревания жидкости для осуществления технологических операций;
  • В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
  • Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
  • Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
  • Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
  • Парогенерации.

С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.

Преимущества и недостатки

В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:

  • Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
  • Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
  • Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
  • Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
  • Нет необходимости организации системы охлаждения ;
  • Не требуют организации отвода продуктов сгорания , не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
  • Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
  • Не образуется накипь в процессе нагревания жидкости , что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;

Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:

  • Создает сильную шумовую нагрузку в месте установки , что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
  • Характеризуется большими габаритами , в сравнении с классическими нагревателями жидкости;
  • Требует точной настройки процесса кавитации , так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
  • Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.

Критерии выбора

При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:

  • Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
  • Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
  • Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
  • Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
  • Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
  • Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.

Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:

Таблица: характеристики некоторых моделей вихревых генераторов

Установленная мощность электродвигателя, кВт
Напряжение в сети, В 380 380 380 380 380
Обогреваемый объем до, куб.метры. 5180 7063 8450 10200 15200
Максимальная температура теплоносителя, о С
Масса нетто, кг. 700 920 1295 1350 1715
Габаритные размеры:
— длина мм

— ширина мм.

— высота мм.

Режим работы автомат автомат автомат автомат автомат

Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.

ВТГ своими руками


Рисунок 4: общий вид

Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:



Рис. 6: подключите подачу воды и электропитания

Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.

Видео по теме


Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор
    . Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду
    . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую
    . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Установка насоса

Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности

На что надо обратить внимание?

  1. Насос должен быть центробежным.
  2. Ваш двигатель сможет его раскрутить.

Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.

Схема гидровихревого теплогенератора.

Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.

Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.

Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.

  1. Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
  2. Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
  3. Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
  4. Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
  5. Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.

Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.

Принцип работы индукционного нагрева

В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.

Самодельный инвенторный нагреватель позволяет производить нагрев быстро и до очень высоких температур. С помощью таких устройств можно не только нагревать воду, но даже плавить различные металлы

Если внутрь индуктора или близ него разместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.

Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается. Широко применяется этот принцип в области обработки металла: его плавки, ковки, пайки наплавки и т. п. С не меньшим успехом вихревой индукционный нагреватель можно использовать для подогрева воды.

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.

Достоинства вихревого теплогенератора
:

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы
: это высокая стоимость и редкое применение на практике.

Сфера применения

Иллюстрация Описание сферы применения

Отопление
. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования
. Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей
. В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность
. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности
. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки
. За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.


Простая конструкция
. Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках
. Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке
. Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля
. Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность
. Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель.

Как сделать теплогенератор своими руками

Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.

Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.

На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.

Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.

Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.

По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.

Формула представляет собой следующее:

Епот = – 2 Екин

Где Екин =mV2/2 – это кинетическое движения Солнца;

Масса планеты – m, кг.

Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:

Роторный теплогенератор

Этот агрегат представляет собой модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора. Не обойтись и без рабочей камеры и патрубков.

Внутри корпуса нашей гидродинамической конструкции стоит маховик в качестве рабочего колеса. Существует огромное количество разнообразных роторных конструкций генераторов тепла. Самой простой среди них является конструкция с диском.

На цилиндрическую поверхность диска ротора наноситься необходимое количество отверстий, которые должны иметь определенный диаметр и глубину. Их принято называть «ячейки Григгса». Стоит отметить, что размеры и количество просверленных отверстий будут изменяться в зависимости от калибра роторного диска и частоты вращения вала электромотора.

Корпус такого источника тепла чаще всего изготавливают в виде пустотелого цилиндра. По сути – это обычная труба с заваренными фланцами на концах. Зазор между внутренней частью корпуса и маховиком будет очень мал (примерно 1,5-2 мм).

Непосредственный подогрев воды будет происходить именно в данном зазоре. Нагревание жидкости получается за счет ее трения о поверхность ротора и корпуса одновременно, при этом диск маховика движется практически на предельных скоростях.

Кавитационные (образование пузырей) процессы, которые происходят в роторных ячейках, оказывают большое влияние на нагрев жидкости.

Роторный теплогенератор - это модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора

Как правило, диаметр диска в данном типе генераторов тепла составляет 300 мм, а скорость вращения гидроустройства 3200 оборотов в минуту. В зависимости от размеров ротора частота вращения будет различаться.

Анализируя конструкцию данной установки можно сделать вывод, что ее ресурс функционирования достаточно мал. Из-за постоянного нагрева и абразивного действия воды зазор постепенно расширяется.

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Обзор цен

Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.

Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:

Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.

Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.

Схема устройства вихревой теплосистемы.

Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: «Утепление трубопроводов минеральной ватой».

Какими особенностями наделены древесные печи длительного горения читайте в этой статье.

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Пути повышения производительности

Схема теплового насоса.

В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.

Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.

Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.

  1. Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
  2. Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
  3. Сделайте крышки с одной и другой стороны.
  4. Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
  5. Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.

На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.

Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.

Вихревые индукционные обогреватели — принцип работы

Вихревые индукционные обогреватели работают на основе физического закона, что вихревые токи возникающие (индуцируемые) переменным магнитным полем нагревают окружающую среду.

В теории. Полый электромагнитный сердечник с индукционной катушкой защищены экранирующей оболочкой от воздействия окружающей среды. При подаче напряжения через клеммную коробку, создается переменное магнитное поле, индуцирующее вихревые токи в катушке сердечника, что приводит к нагреванию металлических систем теплообменной системы. Тепло поступает в систему циркуляции теплоносителя, нагревая его. Температура устанавливается с помощью терморегулятора, а термостат автоматически поддерживает заданную температуру.

На практике. Вихревые индукционные обогреватели это труба, обмотанная проводом, на который подается переменный ток. В трубу, чаще снизу, но можно и с боку, поступает холодный теплоноситель. Вихревые токи, которые создает переменный ток в проводах обмотанных вокруг трубы, нагревает трубу, а, следовательно, и нагревают воду.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу. Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель. При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

ЛЛ.ФОМИНСКИЙ, Г Черкассы
Статья об одном изобретении, которое вызываеи немало споров.

От редакциии. На днях в Черкассы пришел факс из Москвы: "Российская Академия естественных наук избрала Фоминского Л.П. иностранным членом академии". Этого высокого звания Леонид Павлович удостоен за книжку "Тайны мальтийского икса, или К теории движения" , в которой рассказывается, как можно получить неисчерпаемую даровую энергию из любого вещества, приводя его во вращение, и превращая в энергию часть массы тел. По теории Л.П.Фоминского изобретатель Ю.СЛотапов из Кишинева сконструировал теплогенераторы. Их уже выпускают серийно для обогрева домов там, где "напряженка" с природным газом и централизованным теплоснабжением.

Такой теплогенератор потребляет от электросети, скажем, 10 кВт, а тепла (горячей воды) выдает на 15 кВт. Получается 5 кВт даровой энергии. Чем не "вечный двигатель"?! Фирма "Юсмар" в Кишиневе выпускает для индивидуальных потребителей теплогенераторы мощностью от 3 до 65 кВт, а для больших цехов и даже для поселков - теплоэлектростанции мощностью от 100 до 6000 кВт. Теплогенераторы Потапова удостоены золотых медалей на выставках в Москве и Будапеште. В настоящее время ЛЛ.Фоминский вместе с Ю.С.Потаповым заканчивают книгу "Вихревая энергетика".

Теплогенератор Потапова изобретен в начале 90-х годов (патент России 2045715, патент Украины 7205). Он похож на вихревую трубу Ж.Ранке, изобретенную этимфранцузским инженером еще в конце 20-х годов и запатентованную в США (патент 1952281). Французские ученые тогда высмеяли доклад Ж.Ранке, по их мнению, работа вихревой трубы противоречила законам термодинамики.

Законченной и непротиворечивой теории работы вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. "На пальцах" объясняют, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной области через одно отверстие, а из осевой - через другое, и достигают разделения исходного потока газа на горячий и холодный потоки.

Жидкости, в отличие от газов, практически не сжимаемы, поэтому никому в голову в течение полувека не приходило подать в вихревую трубу воду вместо газа. Впервые это сделал в конце 80-х годов Ю.С.Потапов в Кишиневе. К его удивлению, вода в вихревой трубе разделилась на два потока, имеющих разные температуры. Но не на горячий и холодный, а на горячий и теплый. Ибо температура "холодного" потока оказалась чуть выше, чем температура исходной воды, подаваемой насосом в вихревую трубу. Тщательная калориметрия показала, что тепловой энергии такое устройство вырабатывает больше, чем потребляет электрический двигатель насоса, подающий воду в вихревую трубу.

Так родился теплогенератор Потапова , схема которого приведена на рисунке. Его инжекционный патрубок 1 присоединяют к фланцу центробежного насоса (на рисунке не показан), подающего воду под давлением 4-6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой в 10 раз больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающимся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 - спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, соосной с трубой 3. Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 рождается противоток. В нем вода, тоже вращаясь, движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска "холодного" потока. В штуцере 6 изобретатель установил еще один спрямитель потока 7, аналогичный тормозному устройству 5. Он служит для частичного превращения энергии вращения "холодного" потока в тепло. А выходящую из него теплую воду направил по байпасу 8 в патрубок 9 горячего выхода, где онасмешивается с горячим потоком, выходящим из вихревой трубы через спрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник, передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подает ее в вихревую трубу через патрубок 1. В таблице приведены параметры нескольких модификаций вихревого теплогенератора, поставленных Ю.С.Потаповым (см. фото) на серийное производство и выпускаемых его фирмой "Юсмар". На этот теплогенератор имеются технические условия ТУ У 24070270, 001-96. Теплогенератор используют на многих предприятиях и в частных домовладениях, он получил сотни похвальных отзывов от пользователей. Но до появления книги никто не представлял, какие процессы происходят в теплогенераторе Потапова, что сдерживало его распространение и использование. Даже теперь сложно рассказать, как работает это простое с виду устройство и какие процессы происходят в нем, ведя к появлению дополнительного тепла вроде бы из ничего. В1870 г. Р.Клаузиус сформулировал знаменитую теорему вириала, гласящую, что во всякой связанной равновесной системе тел средняя во времени потенциальная энергия их связи друг с другом по своей абсолютной величине в два раза больше средней по времени суммарной кинетической энергии движения этих тел относительно друг друга:

Епот = - 2 Екин. (1)

Вывести эту теорему можно, рассмотрев движение планеты с массой m вокруг Солнца по орбите с радиусом R. На планету действуют центробежная сила Fц = mV2/R и равная ей, но противоположно направленная сила гравитационного притяжения Frp = -GmM/R2. Приведенные формулы для сил образуют первую пару уравнений, а вторую образуют выражения для кинетической энергии движения планеты Екин =mV2/2 и ее потенциальной энергии Егр = GmM/R в гравитационном поле Солнца, имеющего массу М. Из этой системы четырех уравнений и вытекает выражение для теоремы вириала (1). Эту теорему используют и при рассмотрении планетарной модели атома, предложенной Э.Резер-фордом. Только в этом случае работают уже не гравитационные силы, а силы электростатического притяжения электрона к ядру атома. Знак "-" в (1) появился потому, что вектор центростремительной силы противоположен вектору центробежной силы. Этот знак означает нехватку (дефицит) в связанной системе тел количества положительной массы-энергии по сравнению с суммой энергий покоя всех тел этой системы. Рассмотрим в качестве системы связанных тел воду в стакане. Она состоит из молекул Н20, связанных друг с другом так называемыми водородными связями, действие которых и обусловливает монолитность воды в отличие от водяного пара, в котором молекулы воды уже не связаны друг с другом. В жидкой воде часть водородных связей уже разорвана, и чем выше температура воды, тем больше разорванных связей. Лишь у льда почти все они целы.

Когда мы начинаем раскручивать воду в стакане ложечкой, то теорема вириала требует, чтобы при этом между молекулами воды возникали дополнительные водородные связи (за счет восстановления ранее разорванных), словно при понижении температуры воды. А возникновение дополнительных связей должно сопровождаться излучением энергии связи. Межмолекулярным водородным связям, энергия каждой из которых составляет обычно 0,2-0,5 эВ, соответствует инфракрасное излучение с такой энергией фотонов. Так что интересно бы посмотреть на процесс раскручивания воды через прибор ночного видения (простейший опыт, а никем не осуществлялся!). Но так много тепла вы не получите. И не сможете нагреть воду до температуры, большей той, до которой она нагрелась бы за счет трения ее потока о стенки стакана с постепенным превращением кинетической энергии ее вращения в тепловую. Потому что когда вода перестанет вращаться, возникшие при ее раскручивании водородные связи тотчас начнут разрываться, на что будет затрачено тепло той же воды. Это будет выглядеть так, словно вода самопроизвольно охлаждается без обмена теплом с окружающей средой. Можно сказать, что при ускорении раскручивания воды ее удельная теплоемкость уменьшается, а при замедлении вращения - возрастает до нормальной величины. При этом температура воды в первом случае повышается, а во втором понижается без изменения теплосодержания в воде.

Если бы в теплогенераторе Потапова работал только этот механизм, ощутимого выхода дополнительного тепла из него мы бы не получили. Чтобы появилась дополнительная энергия, в воде должны возникнуть не только кратковременные водородные связи, но и какие-то долговременные. Какие? Межатомные связи, обеспечивающие объединение атомов в молекулы, можно сразу исключить из рассмотрения, потому что никаких новых молекул в воде теплогенератора вроде бы не появляется. Остается уповать на ядерные связи между нуклонами ядер атомов в воде. Мы должны предположить, что в воде вихревого теплогенератора идут реакции холодного ядерного синтеза.

Почему ядерные реакции оказываются возможными при комнатных температурах? Причина кроется в водородных связях. Молекула воды Н 2 О состоит из атома кислорода, связанного кова-лентными связями с двумя атомами водорода. При такой связи электрон атома водорода большую часть времени находится между атомом кислорода и ядром атома водорода. Поэтому последнее оказывается не прикрытым с противоположной стороны электронным облаком, а частично оголенным. Из-за этого молекула воды имеет как бы два положительно заряженных бугорка на ее поверхности, обусловливающих огромную поляризуемость молекул воды. В жидкой воде ее соседние молекулы притягиваются друг к другу за счет того, что отрицательно заряженная область одной молекулы притягивается к положительно заряженному бугорку другой. При этом ядро атома водорода - протон начинает принадлежать сразу обеим молекулам, что и обусловливает водородную связь.
Л.Полинг в 30-е годы показал, что протон на водородной связи то и дело перескакивает с одной разрешенной ему позиции на другую с частотой скачков 104 1/с.

При этом расстояние между позициями составляет всего 0,7 А . Но не на всех водородных связях в воде оказывается только по одному протону. При возмущениях структуры воды протон может быть выбит с водородной связи и оказывается переброшенным на соседнюю. В результате на некоторых связях (называемых ориен-тационно-дефектными) оказываются одновременно по два протона, занимающих обе разрешенные позиции с расстоянием между ними 0,7 А. Чтобы сблизить протоны в обычной плазме до таких расстояний, потребовалось бы разогреть плазму до миллионов градусов Цельсия. А плотность ориентационно-де-фектных водородных связей в обычной воде примерно 1015 см"3 . При столь высокой плотности ядерные реакции между протонами на водородных связях должны бы идти с довольно большой скоростью. Но в стакане с неподвижной водой такие реакции, как известно, не идут, иначе содержание дейтерия в природной воде было бы гораздо больше того количества, которое есть в действительности (0,015%).

Астрофизики полагают, что реакция соединения двух атомов водорода в один атом дейтерия невозможна, так как запрещена законами сохранения. А вот реакция образования дейтерия из двух атомов водорода и электрона вроде бы не запрещена, но в плазме вероятность одновременного столкновения таких частиц очень мала. В нашем случае два протона на одной водородной связи иногда сталкиваются (необходимые для такой реакции электроны всегда имеются в виде электронных облаков). Но в обычных условиях такие реакции в воде не идут, потому что для их осуществления необходима параллельная ориентация спинов обеих протонов, ибо спин образующегося дейтерия равен единице. Параллельная ориентация спинов двух протонов на одной водородной связи запрещена принципом Паули. Для осуществления реакции образования дейтерия нужно перевернуть спин одного из протонов.

Такое переворачивание спина осуществляется с помощью торсионных полей (полей вращения), появляющихся при вихревом движении воды в вихревой трубе теплогенератора Потапова. Явление изменения направления спинов элементарных частиц торсионными полями предсказано теорией, разработанной Г.И.Шиповым и уже широко используется в ряде технических приложений .

Таким образом, в теплогенераторе Потапова идет ряд ядерных реакций, стимулированных торсионными полями. Возникает вопрос, не появляются ли при работе теплогенератора вредные для людей излучения. Наши эксперименты, описанные в , показали, что доза ионизации при работе 5-киловаттно-го теплогенератора "Юсмар-2" на обыкновенной воде составляет всего 12-16 мкР/ч. Это в 1,5-2 раза превышает величину естественного фона, но в 3 раза ниже предельно допустимой дозы, установленной нормами радиационной безопасности НРБ-87 для населения, не связанного в профессиональной деятельности с ионизирующим излучением. Но и это ничтожное излучение при вертикальном расположении вихревой трубы теплогенератора горячим концом к низу уходит в землю, а не в стороны, где возможно нахождение людей. Эти измерения также выявили, что излучение идет в основном из зоны тормозного устройства, расположенного у горячего конца вихревой трубы. Это говорит о том, что ядерные реакции идут, по-видимому, в кавитацион-ных пузырьках и кавернах, рождающихся при обтекании потоком воды краев тормозного устройства. Резонансное усиление звуковых колебаний столба воды в вихревой трубе ведет к периодическим сжатиям и расширениям парогазовой каверны. При сжатии в ней могут развиваться высокие давления и температура, при которых ядерные реакции должны идти интенсивнее, чем при комнатной температуре и нормальном давлении. Так что холодный синтез может на поверку оказаться не совсем холодным, а локально горячим. Но все равно он идет не в плазме, а на водородных связях воды. Подробнее об этом можно прочесть в .

Интенсивность ядерных реакций при работе теплогенератора Потапова на обыкновенной воде невысока, поэтому ионизация, создаваемая исходящими от него ионизирующими излучениями, близка к фоновой. А поэтому эти излучения трудно выявить и идентифицировать, что может вызвать сомнения в правильности вышеизложенных представлений. Сомнения отпадают, когда в воду, подаваемую в вихревую трубу теплогенератора, добавляют примерно 1% тяжелой (дейтериевой) воды. Такие эксперименты, описанные в , показали, что интенсивность нейтронного излучения в вихревой трубе существенно возрастает и превышает фоновую в 2-3 раза. Было также зарегистрировано появление в такой рабочей жидкости трития, в результате чего активность рабочей жидкости повысилась на 20% по сравнению с той, которую она имела до включения теплогенератора . Все это говорит о том, что теплогенератор Потапова -работающий промышленный реактор холодного ядерного синтеза, о возможности создания которого вот уже 10 лет до хрипоты спорили физики. Пока они спорили, Ю.С.Потапов его создал и поставил на промышленное производство. И появился такой реактор как нельзя кстати -когда энергетический кризис, обусловленный недостатком обычного топлива, обостряется с каждым годом, а все возрастающие масштабы сжигания органических топ-лив ведут к загрязнению атмосферы и перегреву ее из-за "парникового эффекта", что может привести к экологической катастрофе. Теплогенератор Потапова дает надежду человечеству быстро преодолеть эти трудности.

В заключение надо добавить, что простота теплогенератора Потапова побуждала многих делать попытки поставить такой или подобный теплогенератор на производство без приобретения лицензии у патентовладельца. Особенно много таких попыток было в Украине. Но все они заканчивались плачевно, ибо, во-первых, в теплогенераторе имеется "ноу-хау", без знания которого не достигнуть желаемой теплопро-изводительности. Во-вторых, конструкция настолько хорошо защищена патентом Потапова, что его практически невозможно обойти, как никому не удалось обойти патент Зингера на "машину, шьющую иглой с отверстием для нитки у ее острия". Проще купить лицензию, за которую Ю.С.Потапов просит всего 15 тыс. у.е., и пользоваться консультациями изобретателя при налаживании производства его теплогенераторов, способных помочь Украине в решении теплоэнергетической проблемы.

Литература

  1. Потапов Ю.С., Фоминский Л.П. Вихревая энергетика и холодный ядерный синтез с позиций теории движения. - Кишинев-Черкассы: Око-Плюс, -387 с.
  2. Маэно Н. Наука о льде. -М.: Мир, 1988, -229 с. З.Шипов Г.И. Теория физического вакуума. -М.: НТ-Центр, 1993, -362 с.
  3. Акимов А.Е., Финогеев В.П. Экспериментальные проявления торсионных полей и торсионные технологии. -М.: Изд.НТЦ Информтехника, 1996, -68 с.
  4. Бажутов ЮН. и др. Регистрация трития, нейтронов и радиоуглерода при работе гидроагрегата "Юсмар".//В кн. "3-я Российская конференция по холодному ядерному синтезу и трансмутации ядер РКХЯСТЯ-Г. -М.: НИЦ ФТП Эрзион, 1996, -с.72.
  5. Фоминский Л.П. Тайны мальтийского икса, или К теории движения.-Черкассы: Вi"длуння, 1998, - 112 с.

Устройства выработки электрической энергии можно разделить на несколько категорий, в зависимости от того, какой тип энергии используется для преобразования:

  • тепловые;
  • гидравлические;
  • ветровые;
  • солнечные.

Все эти устройства в настоящее время являются основными поставщиками электроэнергии. Недостатком здесь является зависимость от преобразуемых источников.

Усиливающий трансмиттер СЕ Тесла

Недостатки источников энергии

В тепловых электрогенераторах используется энергия сгорания угля или нефтепродуктов, запасы которых в земных недрах подходят к концу. К этому же типу относятся и атомные электростанции. Запасы радиоактивных элементов еще достаточно велики, но тоже не бесконечны. Тепловые электростанции приносят наибольший вред окружающей среде. Это выбросы в атмосферу не полностью сгоревших углеводородов и углекислого газа, а также большая вероятность радиоактивного заражения (для устройств на атомной энергии).

Гидравлические устройства включают в себя гидроэлектростанции, в которых используется энергия запасенной в водохранилищах воды рек и приливные электростанции, использующие энергию приливов и отливов. Нормальная работа гидроэлектростанций зависит от уровня воды в водохранилище и, при существенном его понижении, исключается. К тому же плотины гидроэлектростанций крайне негативно влияют на существующие экосистемы рек и прибрежных районов. Меньшее отрицательное влияние на окружающую среду имеют приливные электростанции.

Ветро-генераторы зависят от движения воздуха и могут быть построены только в местности с устойчивыми ветрами. При изменении климата работоспособность ветро-генераторов может быть под вопросом.

Похожая ситуация и с устройствами преобразования солнечной энергии. Солнечные электростанции устанавливаются только в местности с большим количеством солнечных дней в году. Ночью и в облачную погоду такие электростанции не работают.

Перечисленные недостатки заставляют вести активные поиски альтернативных источников энергии.

Альтернативные источники энергии

Среди энтузиастов наиболее широкое внимание уделяется использованию свободной энергии и магнитного поля Земли. Поскольку научной базы для определения свободной энергии до сих пор нет, то возникают споры, что же такое свободная энергия. Большинство исследований проводится в области применения радиантной энергии, энергии вакуума и магнитного поля. Источником вдохновения для конструирования генераторов на свободной энергии своими руками служат работы сербского ученого Николы Тесла.

Все устройства, которые используют в работе принцип свободной энергии делятся на:

  • радиантные генераторы;
  • блокинг-генераторы на постоянных магнитах без движущихся частей;
  • блокинг-генераторы на постоянных магнитах;
  • трансгенератор;
  • механические нагреватели с коэффициентом полезного действия больше единицы;
  • имплозионные (вихревые генераторы Потапова);
  • электролиз воды без источников внешней энергии;
  • тепловые насосы;
  • холодный ядерный синтез.

Из всех перечисленных устройств только тепловые насосы имеют строгое научное обоснование. Говоря точнее, они не являются генераторами на свободной энергии, поскольку используют в своей работе разницу температур в различных слоях земли.

Радиантные СЕ генераторы

Радиантная энергия подобна электростатической, в связи с чем нередко возникает путаница. Радиантная энергия получается из окружающей среды или внешнего источника электроэнергии с последующей отдачей во внешнюю цепь ее излишков.

Наиболее известные устройства на радиантной энергии – это усиливающий трансмиттер Тесла, генератор СЕ с самозапиткой и генератор Т. Генри Моррея. Все новые схемы используют в работе их принципы действия.

Усиливающий трансмиттер Тесла

Усиливающий трансмиттер Тесла представляет собой резонансный трансформатор с особыми обмотками плоской формы, которые запитываются от внешнего источника электроэнергии посредством специальных конденсаторов и разрядников.

Особенностью трансмиттера является генерация в окружающей среде стоячих волн радиантной энергии, которая не ослабевала от расстояния. Областью применения усиливающего трансмиттера предполагалась дистанционная беспроводная передача электроэнергии. К сожалению, Тесла не успел в полной мере закончить эксперименты по передаче энергии, а чертежи и описания опытных установок оказались после его смерти засекреченными. Фото приемно-передающей вышки усиливающего трансмиттера Тесла приведено выше.

Собранные своими руками, новые установки если и работали, то выдавали крайне низкую эффективность. Единственное устройство, которое под силу собрать и испытать своими руками, это трансформатор Тесла, имеющий огромный коэффициент трансформации и способный выдавать на выходе напряжение в десятки и сотни тысяч вольт при ничтожных затратах входной электроэнергии.

Генератор Т. Генри Моррея

Генератор Т. Генри Моррея основан на преобразовании радиантной энергии посредством специально сконструированных конденсаторов и диодов. Конструктивно конденсаторы были схожи с электронными лампами, однако, в отличие от последних, не требовали дополнительного подогрева электродов (рис. ниже).

Конденсатор Т. Генри Моррея

Генератор СЕ с самозапиткой – это генератор автоколебаний, требующий подачи энергии от внешнего источника для запуска генерации. В дальнейшем питание производится от выходного напряжения генератора под действием магнитного поля Земли. Если запуск собранного своими руками генератора производится от аккумуляторной батареи, то при работе блокинг-генератора с самозапиткой избыток энергии можно пускать на подзаряд аккумулятора (рис. ниже). Работа генератора основана на взаимодействии магнитного поля трансформатора с энергией от различных источников.

Схема генератора СЕ с самозапиткой

Одним из вариантов генератора на свободной энергии с самозапиткой является трансгенератор (рис. ниже). Данный генератор использует действие магнитного поля Земли на обмотки трансформатора и весьма прост для сборки своими руками.

Схема трансгенератора – генератора на свободной энергии с самозапиткой

Генераторы свободной энергии

Путем объединения физических процессов генераторов СЕ с самозапиткой и генераторов на постоянных магнитах получается схема магнитного блокинг-генератора на постоянных магнитах (рис. ниже). Такой блокинг-генератор также требует импульс от входного источника для начала генерации. Для создания магнитного поля здесь используются мощные магниты.

Схема блокинг-генератора СЕ на постоянных магнитах

Имплозионные (вихревые) генераторы

Разговаривая о генераторах электроэнергии, нельзя не упомянуть источники тепла, которые позволяют вырабатывать тепло с коэффициентом полезного действия более 100%. Речь идет о вихревых генераторах конструкции Ю. С. Потапова. Работа теплогенератора основана на взаимодействии соосных вихревых потоков жидкости. Принцип работы вихревого генератора Потапова приведен на рисунке ниже.

Схема вихревого генератора Потапова

Подача воды осуществляется центробежным насосом через патрубок (2). Двигаясь по спирали вдоль внешней стенки корпуса (1), жидкость подходит к отражающему конусу (4), где разделяется на два потока. Внешний, подогретый поток возвращается к насосу, а внутренний, отразившись от поверхности конуса, образует вихрь меньшего диаметра, который проходит внутри первичного вихря и поступает на выходной патрубок (3), к которому подключается система отопления.

Нагрев жидкости происходит за счет теплообмена между завихрениями. Отсутствие подвижных частей в теплообменнике обеспечивает теплогенератору сверхвысокий КПД.

Собрать вихревой нагреватель Потапова своими руками сложно, поскольку требуется применение заводского оборудования для обработки металла.

Новые варианты теплогенераторов используют явление кавитации – образование в объеме жидкости микроскопических пузырьков пара и их схлопывание. Данный процесс сопровождается выделением большого количества тепловой энергии.

Электролиз воды

Очень перспективны новые направления исследований, которые занимаются проблемой электролиза воды без применения сторонних источников энергии. Вода является простейшим обратимым источником энергии. Все очень просто. Молекулы воды состоят из атомов кислорода и водорода. При электролизе образуются газы кислород и водород, которые можно использовать в качестве замены любого углеводородного топлива.

Взаимодействие кислорода и водорода происходит с образованием молекул воды и выделением большого количества тепла. Проблема электролиза заключается в необходимости подвода большого количества энергии для протекания реакции. Изменяя конфигурацию электродов и состав катализатора, а также энергию магнитного поля, можно добиться значительного снижения потребляемой мощности. Уже проведен ряд опытов, которые доказывают возможность разложить воду на составляющие элементы без подвода энергии и создать новые источники энергии.

Холодный ядерный синтез

Традиционные ядерные и термоядерные реакции, в ходе которых происходит превращение одних элементов в другие, требуют огромного количества энергии для инициирования процесса. Это связано с тем, что для превращения элементов требуется сблизить их ядра на очень малое расстояние, при котором силы взаимного отталкивания настолько велики, что требуют огромных затрат энергии.

Такие реакции происходят в атомных реакторах, атомных бомбах и ускорителях частиц в условиях большой напряженности магнитного поля.

Атомный реактор работает по тому же принципу, что и атомная бомба, за исключением того, что реакция может контролироваться. Реакторы требуют специфического топлива и чрезвычайно опасны в плане радиационного заражения и облучения.

Проблема холодного ядерного синтеза заключается в том, чтобы найти возможность проводить ядерные реакции без подвода внешней энергии и без выделения радиоактивного излучения. Как и в случае с электролизом воды, новые исследования уже дали положительные результаты.

Проблема генераторов на свободной энергии заключается в активном противодействии сторонников традиционных источников, поскольку вся мировая экономика основана на углеводородном топливе и радиоактивных материалах. Холодный ядерный синтез объявлен лженаукой, и всякое финансирование в этой области прекращено. Все работы проводятся только энтузиастами.

Видео. Генератор с самозапиткой

В Интернете можно найти множество ссылок на конструкции генераторов СЕ различных типов, таких как трансгенератор или блокинг-генератор СЕ. Приводятся описания и технические характеристики, методика расчетов и сборки своими руками. Однако нет ни одной ссылки, указывающей, где можно увидеть действующий прототип генератора на свободной энергии. Также многие собирали своими руками генераторы свободной энергии, блокинг-генераторы, однако их характеристики не соответствовали заявленным, или устройства не работали совсем.