Отличия между цифровыми микроскопами и оптическими. Устройство и основные части оптического микроскопа Как называются частицы невидимые в оптический микроскоп

Микроскоп – это устройство, предназначенное для увеличения изображения объектов изучения для просмотра скрытых для невооруженного глаза деталей их структуры. Прибор обеспечивает увеличение в десятки или тысячи раз, что позволяет проводить исследования, которые невозможно получить используя любое другое оборудование или приспособление.

Микроскопы широко применяются в медицине и лабораторных исследованиях. С их помощью проводится инициализация опасных микроорганизмов и вирусов с целью определения метода лечения. Микроскоп является незаменимым и постоянно совершенствуется. Впервые подобие микроскопа было создано в 1538 году итальянским врачом Джироламо Фракасторо, который решил установить последовательно две оптические линзы, подобные тем, что используются в очках, биноклях, подзорных трубах и лупах. Над усовершенствованием микроскопа трудился Галилео Галилей, а также десятки всемирно известных ученых.

Устройство

Существует много разновидностей микроскопов, которые отличаются между собой по устройству. Большинство моделей объединяет похожая конструкция, но с небольшими техническими особенностями.

В подавляющем большинстве случаев микроскопы состоят из стойки, на которой закрепляется 4 главных элемента:
  • Объектив.
  • Окуляр.
  • Осветительная система.
  • Предметный столик.
Объектив

Объектив представляет собой сложную оптическую систему, которая состоит из идущих друг за другом стеклянных линз. Объективы сделаны в виде трубок, внутри которых могут быть закреплены до 14 линз. Каждая из них увеличивает изображение, снимая его с поверхности впереди стоящей линзы. Таким образом, если одна увеличит предмет в 2 раза, следующая сделает увеличение данной проекции еще больше и так до тех пор, пока предмет не отобразится на поверхности последний линзы.

Каждая линза имеет свое расстояние для фокусировки. В связи с этим они намертво закреплены в тубусе. Если любая из них будет передвинута ближе или дальше, получить отчетливое увеличение изображения не удастся. В зависимости от особенностей линзы, длина тубуса, в котором заключен объектив, может отличаться. Фактически, чем он выше, тем более увеличенным будет изображение.

Окуляр

Окуляр микроскопа также состоит из линз. Он предназначен для того чтобы оператор, который работает с микроскопом, мог приложить к нему глаз и увидеть увеличенное изображение на объективе. В окуляре имеются две линзы. Первая располагается ближе к глазу и называется глазной, а вторая полевой. С помощью последней осуществляется регулировка увеличенного объективом изображения для его правильной проекции на сетчатку глаза человека. Это необходимо для того, чтобы путем регулировки убрать дефекты восприятия зрения, поскольку у каждого человека фокусировка осуществляется на разном расстоянии. Полевая линза позволяет подстроить микроскоп под данную особенность.

Осветительная система

Чтобы рассмотреть изучаемый предмет необходимо его осветить, поскольку объектив закрывает естественный свет. В результате смотря в окуляр всегда можно видеть только черное или серое изображение. Специально для этого была разработана осветительная система. Она может быть выполнена в виде лампы, светодиода или другого источника света. У самых простых моделей осуществляется прием световых лучей из внешнего источника. Они направляются на предмет изучения с помощью зеркал.

Предметный столик

Последней важной и самой простой в изготовлении деталью микроскопа является предметный столик. На него направлен объектив, поскольку именно на нем закрепляется предмет для изучения. Столик имеет плоскую поверхность, что позволяет фиксировать объект без опаски, что он сдвинется. Даже минимальное передвижение объекта исследований под увеличением будет огромным, поэтому найти изначальную точку, которая исследовалась, заново будет непросто.

Типы микроскопов

За огромную историю существования данного прибора, было разработано несколько значительно отличающихся между собой по принципу действия микроскопов.

Среди самых часто используемых и востребованных типов этого оборудования выделяют такие виды:
  • Оптические.
  • Электронные.
  • Сканирующие зондовые.
  • Рентгеновские.
Оптические

Оптический микроскоп является самым бюджетным и простым устройством. Данное оборудование позволяет провести увеличение изображения в 2000 раз. Это довольно большой показатель, который позволяет изучать строение клеток, поверхность ткани, находить дефекты на искусственно созданных предметах и пр. Стоит отметить, что для достижения столь большого увеличения устройство должно быть очень качественно выполненным, поэтому стоит дорого. Подавляющее большинство оптических микроскопов сделано значительно проще и имеют сравнительно небольшое увеличение. Учебные типы микроскопов представлены именно оптическими. Это обусловлено их меньшей стоимостью, а также не слишком большой кратностью увеличения.

Обычно оптический микроскоп имеет несколько объективов, которые закрепляются на стойке подвижными. Каждый из них имеет свою степень увеличения. Рассматривая предмет можно передвинуть объектив в рабочее положение и изучить его под определенной кратностью. При желании еще больше приблизить изображение, нужно просто перейти на еще более увеличивающий объектив. Данные устройства не имеют сверхточной регулировки. К примеру, если необходимо лишь немного приблизить изображение, то перейдя на другой объектив, можно его приблизить в десятки раз, что будет чрезмерно и не позволит правильно воспринять увеличенную картинку и избежать ненужных деталей.

Электронный микроскоп

Электронный является более совершенной конструкцией. Он обеспечивает увеличение изображения как минимум в 20000 раз. Максимальное увеличение подобного прибора возможно в 10 6 раз. Особенность этого оборудования заключается в том, что вместо луча света как у оптических, у них направляется пучок электронов. Получение изображения осуществляется благодаря применению специальных магнитных линз, которые реагируют на движение электронов в колоне прибора. Регулировка направленности пучка осуществляется с помощью . Данные устройства появились в 1931 году. В начале 2000-х годов начали совмещать компьютерное оборудование и электронные микроскопы, что значительно повысило кратность увеличения, диапазон настройки и позволило запечатлеть получаемое изображение.

Электронные устройства при всех своих достоинствах имеют большую цену, и требуют особенных условий для работы. Чтобы получать качественное четкое изображение необходимо, чтобы предмет изучения находился в вакууме. Это связано с тем, что молекулы воздуха рассеивают электроны, что нарушает четкость изображения и не позволяет проводить точную регулировку. В связи с этим данное оборудование применяют в лабораторных условиях. Также важным требованием для использования электронных микроскопов является отсутствие внешних магнитных полей. В связи с этим лаборатории, в которых их используют, имеют очень толстые изолированные стены или находятся в подземных бункерах.

Подобное оборудование используется в медицине, биологии, а также в различных отраслях промышленности.

Сканирующие зондовые микроскопы

Сканирующий зондовый микроскоп позволяет получать изображение с объекта путем его исследования с помощью специального зонда. В результате получается трехмерное изображение, с точными данными характеристики объектов. Данное оборудование имеет высокое разрешение. Это сравнительно новое оборудование, которое создали несколько десятков лет назад. Вместо объектива у данных приборов имеется зонд и система его перемещения. Получаемое из него изображение регистрируется сложной системой и записывается, после чего создается топографическая картина увеличенных объектов. Зонд оснащается чувствительными сенсорами, которые реагируют на движение электронов. Также встречаются зонды, которые работают по оптическому типу путем увеличения благодаря установке линз.

Часто зонды применяют для получения данных о поверхности предметов со сложным рельефом. Зачастую их опускают в трубу, отверстия, а также мелкие тоннели. Единственным условием является соответствие диаметра зонда диаметру объекта изучения.

Для данного метода характерна значительная погрешность измерения, поскольку получаемая в результате 3D картина сложно поддается расшифровке. Присутствует много деталей, которые искажаются компьютером при обработке. Первоначальные данные обрабатываются математическим способом с помощью специализированного программного обеспечения.

Рентгеновские микроскопы

Рентгеновский микроскоп относится к лабораторному оборудованию, применяемому для изучения объектов, размеры которых сопоставимы с длиной рентгеновской волны. Эффективность увеличения данного устройства находится между оптическими и электронными приборами. На изучаемый объект отправляются рентгеновские лучи, после чего чувствительные датчики реагируют на их преломление. В результате создается картинка поверхности изучаемого объекта. Благодаря тому, что рентгеновские лучи могут проходить сквозь поверхность предмета, подобное оборудование позволяет не только получить данные о структуре объекта, но и его химическом составе.

Рентгеновское оборудование обычно используется для оценки качества тонких покрытий. Его используют в биологии и ботанике, а также для анализа порошковых смесей и металлов.

Микроскоп (от греч. mikros - малый и skopeo - смотрю) - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, невидимых невооруженным глазом.

Первый из известных микроскопов был создан в 1590 году в Нидерландах потомственными оптиками Захарием и Хансом Янсенами , смонтировавшими две выпуклые линзы внутри одной трубки. Позднее Декарт в своей книге "Диоптрика" (1637) описал более сложный микроскоп, составленный из двух линз - плоско-вогнутой (окуляр) и двояковыпуклой (объектив). Дальнейшее же совершенствование оптики позволило Антони ван Левенгуку в 1674 г. изготовить линзы с увеличением, достаточным для проведения простых научных наблюдений и впервые в 1683 году описать микроорганизмы.

Современный микроскоп (рисунок 1) состоит из трех основных частей: оптической, осветительной и механической.

Основными деталями оптической части микроскопа являются две системы увеличительных линз: обращенный к глазу исследователя окуляр и обращенный к препарату объектив. Окуляры имеют две линзы, верхняя из которых называется главной, а нижняя собирательной. На оправе окуляров обозначают производимое ими увеличение (×5, ×7, ×10, ×15). Количество окуляров у микроскопа может быть различным, в связи с чем различат монокулярные и бинокулярные микроскопы (предназначены для наблюдения за объектом одним или двумя глазами), а также тринокуляры , позволяющие подключать к микроскопу системы документирования (фото- и видеокамеры).

Объективы представляют собой систему линз, заключенных в металлическую оправу, из которых передняя (фронтальная) линза производит увеличение, а лежащие за ней коррекционные линзы устраняют недостатки оптического изображения. На оправе объективов цифрами также указано производимое ими увеличение (×8, ×10, ×40, ×100). Большинство моделей, предназначенных для микробиологических исследований, имеют в комплекте несколько объективов с разными степенями увеличения и поворотный механизм, предназначенный для их быстрой смены - турель , часто называемый «револьверной головкой ».


Осветительная часть предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы оптическая часть микроскопа предельно точно выполняла свои функции. Осветительная часть в прямых микроскопа проходящего света расположена за объектом под объективом и включает в себя источник света (лампу и электрический блок питания) и оптико-механическую систему (конденсор, полевую и апертурную регулируемую диафрагмы). Конденсор состоит из системы линз, которые предназначены для собирания идущих от источника света лучей в одной точке - фокусе , которая должна находиться в плоскости рассматриваемого объекта. В свою очередь диафрагма расположена под конденсором и предназначена для регулирования (увеличения или уменьшения) потока лучей, проходящих от источника света.

Механическая часть микроскопа содержит детали, объединяющие описанные выше оптическую и осветительную части, а также позволяющие размещать и перемещать исследуемый препарат. Соответственно, механическая часть состоит из основания микроскопа и держателя , к верхней части которого прикрепляются тубус - полая трубка, предназначенная для размещения объектива, а также упомянутая выше револьверная головка. Ниже находится предметный столик , на который устанавливаются предметные стекла с исследуемыми образцами. Предметный столик может перемещаться в горизонтальной плоскости с использованием соответствующего устройства, а также вверх и вниз, что обеспечивает настройку резкости изображения с помощью грубого (макрометрического) и точного (микрометрического) винтов.

Увеличение, которое дает микроскоп, определяется произведением увеличения объектива на увеличение окуляра. Кроме светопольной микроскопии широкое применение в специальных методах исследования плучили: темнопольная, фазово-контрастная, люминесцентная (флюоресцентная) и электронная микроскопия.

Первичная (собственная) флюоресценция возникает без специальной обработки препаратов и присуща ряду биологически активных веществ, таких, как ароматические аминокислоты, порфирины, хлорофилл, витамины А, В2, В1 , некоторые антибиотики (тетрациклин) и химиотерапевтические вещества (акрихин, риванол). Вторичная (наведенная) флюоресценция возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями - флюорохромами. Некоторые из этих красителей диффузно распределяются в клетках, другие избирательно связываются с определёнными структурами клеток или даже с определёнными химическими веществами.

Для проведения данного вида микроскопии используются специальные люминесцентные (флюоресцентные) микроскопы , отличающиеся от обычного светового микроскопа наличием мощного источника освещения (ртутно-кварцевая лампа сверхвысокого давления или галогеновая кварцевая лампа накаливания), излучающего преимущественно в длинноволновой ультрафиолетовой или коротковолновой (сине-фиолетовой) области видимого спектра.

Данный источник используется для возбуждения флюоресценции, прежде, чем испускаемый им свет проходит через специальный возбуждающий (сине-фиолетовый) светофильтр и отражается интерференционной светоделительной пластинкой , почти полностью отсекающими более длинноволновое излучение и пропускающими только ту часть спектра, которая возбуждает флюоресценцию. При этом в современных моделях люминесцентных микроскопов возбуждающее излучение попадает на препарат через объектив (!) После же возбуждения флюоресценции возникающий свет вновь попадает в объектив, после чего проходит через расположенный перед окуляром запирающий (желтый) светофильтр , отсекающий коротковолновое возбуждающее излучение и пропускающий свет люминесценции от препарата к глазу наблюдателя.

В силу использования подобной системы светофильтров интенсивность свечения наблюдаемого объекта обычно невелика, в связи с чем люминесцентную микроскопию следует проводить в специальных затемненных помещениях .

Важным требованием при выполнении данного вида микроскопии является также применение нефлюоресцирующих иммерсионных и заключающих сред . В частности, для гашения собственной флюоресценции кедрового или иного иммерсионного масла к нему добавляют небольшие количества нитробензола (от 2 до 10 капель на 1 г). В свою очередь в качестве заключающих сред для препаратов могут быть использованы буферный раствор глицерина, а также нефлюоресцирующие полимеры (полистирол, поливиниловый спирт). В остальном при проведении люминесцентной микроскопии применяют обычные предметные и покровные стёкла, пропускающие излучение в используемой части спектра и не обладающие собственной люминесценцией.

Соответственно, важными преимуществами люминесцентной микроскопии являются:

1) цветное изображение;

2) высокая степень контрастности самосветящихся объектов на черном фоне;

3) возможность исследования клеточных структур, избирательно поглощающих различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;

4) возможность определения функционально-морфологических изменений клеток в динамике их развития;

5) возможность специфического окрашивания микроорганизмов (с использованием иммунофлюоресценции).

Электронная микроскопия

Теоретические основы использования электронов для наблюдения микроскопических объектов были заложены У. Гамильтоном , установившим аналогию между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях, а также де Бройлем , выдвинувшим гипотезу о существовании у электрона одновременно корпускулярных и волновых свойств.

При этом, благодаря чрезвычайно малой длине волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, теоретически рассчитанный предел разрешения , характеризующий способность прибора отобразить раздельно мелкие, максимально близко расположенные детали объекта, у электронного микроскопа составляет 2-3 Å (Ангстрем , где 1Å=10 -10 м), что в несколько тысяч раз выше, чем у оптического микроскопа. Первое изображение объекта, сформированное пучками электронов, было получено в 1931г. немецкими учеными М. Кноллем и Э. Руска .

В конструкциях современных электронных микроскопов источником электронов служит металл (обычно вольфрам), из которого после его нагревания до 2500 ºС в результате термоэлектронной эмиссии испускаются электроны. С помощью электрических и магнитных полей формирующийся поток электронов можно ускорять и замедлять, а также отклонять в любых направлениях и фокусировать. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных магнитных, электростатических и комбинированных устройств, называемых «электронными линзами» .

Необходимым условием перемещения электронов в виде пучка на большое расстояние является также создание на их пути вакуума , поскольку в этом случае средняя длина свободного пробега электронов между столкновениями с газовыми молекулами будет значительно превышать расстояние, на которое они должны перемещаться. Для этих целей достаточно поддерживать в рабочей камере отрицательное давление приблизительно 10 -4 Па.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные , среди которых первые два являются наиболее часто используемыми.

Оптическая схема просвечивающего (трансмиссионного) электронного микроскопа полностью эквивалентна соответствующей схеме оптического микроскопа, в котором световой луч заменяется электронным лучом, а системы стеклянных линз заменяются системами электронных линз. Соответственно, просвечивающий электронный микроскоп состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения , состоящего из фотокамеры и флуоресцирующего экрана.

Все эти узлы соединены друг с другом, образуя так называемую «колонну микроскопа», внутри которой поддерживается вакуум. Другим важным требованием, предъявляемым к исследуемому объекту, является его толщина менее чем 0,1 мкм. Окончательное же изображение объекта формируется после соответствующей фокусировки прошедшего сквозь него пучка электронов на фотопленке или флюоресцирующем экране , покрытом специальным веществом - люминофором (аналогичен экрану в кинескопах телевизоров) и превращающем электронное изображение в видимое.

При этом образование изображения в просвечивающем электронном микроскопе связано главным образом с различной степенью рассеяния электронов различными участками исследуемого образца и в меньшей мере с различием в поглощении электронов этими участками. Контраст усиливают также, применяя «электронные красители » (четырёхокись осмия, уранил и др.), избирательно связывающиеся с некоторыми участками объекта. Устроенные подобным образом современные просвечивающие электронные микроскопы обеспечивают максимальное полезное увеличение до 400000 раз, что соответствует разрешающей способности в 5,0 Å. Выявляемое с использованием просвечивающей электронной микроскопии тонкое строение бактериальных клеток называют ультраструктурой .

В отражательном (сканирующем) электронном микроскопе изображение создается с помощью электронов, отраженных (рассеянных) поверхностным слоем объекта при его облучении под малым углом (приблизительно несколько градусов) к поверхности. Соответственно, образование изображения обусловлено различием рассеяния электронов в разных точках объекта в зависимости от его поверхностного микрорельефа, а сам результат подобной микроскопии предстает в виде структуры поверхности наблюдаемого объекта. Контрастность может быть усилена напылением на поверхность объекта частиц металла. Достигнутая разрешающая способность микроскопов такого типа составляет порядка 100 Å.

Лекция №7

Методы визуализации поверхности

Оптическая микроскопия

Человеческий глаз, позволяющий нам видеть и изучать окружающий мир, представляет собой довольно простую оптическую систему, главным элементом которой является хрусталик, фактически представляющий собой линзу из жидкокристаллического вещества. Минимальные объекты, которые можно разглядеть при помощи такой оптической системы, имеют размеры около 0,1 мм, а для разглядывания и изучения более мелких предметов сперва стали применять очки или лупы, а затем и сложные конструкции из оптических линз, называемые оптическими микроскопами.

Микроскоп (от греч. mikros – малый и skopeo – смотрю) – прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооруженным глазом .

Оптическая схема и принцип действия оптического микроскопа . Одна из типичных схем оптического микроскопа приведена на рис. 1. Объект 7, расположенный на предметном столике 10, освещается обычно искусственным светом от осветителя (лампа 1 и линза-коллектор 2) с помощью зеркала 4 и конденсора 6. Для увеличения объекта служит объектив 8 и окуляр 9. Объектив создает действительное перевернутое и увеличенное изображение 7" объекта 7. Окуляр образует вторично увеличенное мнимое изображение 7" обычно на расстоянии наилучшего видения D=250 мм. Если окуляр сдвинуть так, чтобы изображение 7" оказалось перед передним фокусом окуляра F ок, то изображение, даваемое окуляром, становится действительным и его можно получить на экране или фотопленке. Общее увеличение равно произведению увеличения объектива на увеличение окуляра: x=bX ок. Увеличение объектива выражается формулой: b=D/F об, где D – расстояние между задним фокусом объектива F об и передним фокусом окуляра F ок (так называемая оптическая длина тубуса микроскопа); F об – фокусное расстояние объектива. Увеличение окуляра, подобно увеличению лупы, выражается формулой: X ок = 250/F ок, где F ок – фокусное расстояние окуляра. Обычно объективы оптических микроскопов имеют увеличения от 6,3 до 100, а окуляры от 7 до 15. Поэтому общее увеличение такого микроскопа лежит в пределах от 44 до 1500. Полевая диафрагма 3 и апертурная 5 служат для ограничения светового пучка и уменьшения рассеянного света. Важной характеристикой оптического микроскопа является его разрешающая способность, определяемая как величина, обратная тому наименьшему расстоянию, на котором два соседних элемента структуры еще могут быть видимы раздельно . Разрешающая способность оптического микроскопа ограничена, что объясняется дифракцией света. Вследствие дифракции изображение бесконечно малой светящейся точки, даваемое объективом такого микроскопа, имеет вид не точки, а круглого светлого диска (окруженного темными и светлыми кольцами), диаметр которого равен: d = 1,22 , где – длина волны света и А –числовая апертура объектива, равная: А = n sin(a/2) (n – показатель преломления среды, находящейся между предметом и объективом, a – угол между крайними лучами конического светового пучка, выходящего из точки предмета и попадающего в объектив). Если две светящиеся точки расположены близко друг от друга, их дифракционные картины накладываются одна на другую, давая в плоскости изображения сложное распределение освещенности. Наименьшая относительная разница освещенностей, которая может быть замечена глазом, равна 4%. Этому соответствует наименьшее расстояние, разрешаемое в оптическом микроскопе, d=0,51 . Для несамосветящихся объектов предельное разрешение d пр составляет /(А+А") , где А" – числовая апертура конденсора микроскопа. Таким образом, разрешающая способность (1/d ) прямо пропорциональна апертуре объектива и для ее повышения пространство между предметом и объективом заполняется жидкостью с большим показателем преломления. Апертуры иммерсионных объективов большого увеличения достигают величины А =1,3 (у обычных «сухих» объективов А =0,9). Существование предела разрешающей способности влияет на выбор увеличения оптического микроскопа. Увеличение оптического микроскопа в пределах 500А – 1000А называется полезным, так как при нем глаз различает все элементы структуры объекта, разрешаемые микроскопом. При увеличениях свыше 1000А не выявляются никакие новые подробности структуры объекта; все же иногда такие увеличения применяются, например, в микрофотографии, при микропроекции.

Методы наблюдения при оптической микроскопии . Структуру объекта можно различить, если разные его части по-разному поглощают и отражают свет, либо отличаются одна от другой (или от среды) показателями преломления. Эти свойства обусловливают разницу амплитуд и фаз световых волн, отраженных или прошедших через различные участки объекта, от чего, в свою очередь, зависит контрастность изображения. Поэтому методы наблюдения, применяемые в оптической микроскопии, выбираются в зависимости от характера и свойств изучаемого объекта.

Метод светлого поля в проходящем свете применяется при исследовании прозрачных объектов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Таковы, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и материалов радиоэлектроники. В отсутствии объекта пучок лучей из конденсора 6 (см. рис. 1) проходит через объектив 8 и дает равномерно освещенное поле вблизи фокальной плоскости окуляра 9. Если в объекте 7 имеется абсорбирующий объект, то он отчасти поглощает и отчасти рассеивает падающий на него свет (штриховая линия), что и обусловливает, согласно дифракционной теории, возникновение изображения. Метод может быть полезен и при неабсорбирующих объектах, если они рассеивают освещающий пучок настолько сильно, что значительная часть пучка не попадает в объектив.

Метод светлого поля в отраженном свете (рис. 2) применяется для наблюдения непрозрачных объектов, например, шлифов металлов 4.

Освещение объекта производится от осветителя 1 и полупрозрачного зеркала 2 сверху через объектив 3, который выполняет одновременно и роль конденсора. Изображение создается в плоскости 6 объективом совместно с тубусной линзой 5; структура объекта видна из-за различия в отражающей способности ее элементов; на светлом поле выделяются неоднородности, рассеивающие падающий на них свет.

Метод темного поля в проходящем свете (рис. 3) применяется для получения изображений прозрачных, неабсорбирующих объектов. Свет от осветителя 1 и зеркала 2 проходит специальный конденсор темного поля 3 в виде полого конуса и непосредственно в объектив 5 не попадает. Изображение создается только светом, рассеянным микрочастицами объекта 4. В поле зрения 6 на темном фоне видны светлые изображения частиц, отличающихся от окружающей среды по показателю преломления.

Метод ультрамикроскопии , основанный на этом же принципе (освещение объекта в ультрамикроскопах производится перпендикулярно направлению наблюдения), дает возможность обнаруживать сверхмелкие детали, размеры которых (2 нм) лежат далеко за пределами разрешения оптического микроскопа. Возможность обнаружения таких объектов, например, мельчайших коллоидных частиц, с помощью ультрамикроскопа обусловлена дифракцией света на них. При сильном боковом освещении каждая частица в ультрамикроскопе отмечается наблюдателем как яркая точка (светящееся дифракционное пятно) на темном фоне. Вследствие дифракции на мельчайших частицах рассеивается очень мало света. Поэтому в ультрамикроскопии применяют, как правило, сильные источники света. В зависимости от интенсивности освещения, длины световой волны, разности показателей преломления частицы и среды обнаруживаемые частицы имеют размеры (2–50) нм. По дифракционным пятнам нельзя определить истинные размеры, форму и структуру частиц: ультрамикроскоп не дает изображений оптических исследуемых объектов. Однако, используя ультрамикроскоп, можно установить наличие и численную концентрацию частиц, изучать их движение, а также рассчитать средний размер частиц, если известна их весовая концентрация и плотность. Ультрамикроскоп создали в 1903г. немецкий физик Г. Зидентопф и австрийский химик Р. Зигмонди. В предложенной ими схеме щелевого ультрамикроскопа (рис. 4, а) исследуемая система неподвижна. Кювета 5 с изучаемым объектом освещается источником света 1 (2 – конденсор; 4 – осветительный объектив) через узкую прямоугольную щель 3, изображение которой проецируется в зону наблюдения.

В окуляр наблюдательного микроскопа 6 видны светящиеся точки частиц, находящихся в плоскости изображения щели. Выше и ниже освещенной зоны присутствие частиц не обнаруживается. В поточном ультрамикроскопе (рис. 4, б) изучаемые частицы движутся по трубке навстречу глазу наблюдателя. Пересекая зону освещения, они регистрируются как яркие вспышки визуально или с помощью фотометрического устройства. Регулируя яркость освещения наблюдаемых частиц подвижным фотометрическим клином 7, можно выделять для регистрации частицы, размер которых превышает заданный предел. Ультрамикроскоп применяют при исследованиях дисперсных систем, для контроля чистоты атмосферного воздуха, воды, степени загрязнения оптически прозрачных сред посторонними включениями.

При наблюдении по методу темного поля в отраженном свете (рис. 5) непрозрачные объекты (например, шлифы металлов) освещают сверху специальной кольцевой системой, расположенной вокруг объектива и называемой эпиконденсором .

Лучи света от лампы осветителя темного поля 1, отражающиеся от эпиконденсора 2 и падающие под углом к поверхности подложки 3, рассеиваются инородными частицами. Эти рассеянные от инородных частиц лучи света проходят через линзы объектива микроскопа 4 и 5, отражаются от зеркала призмы микроскопа 6 и, проходя через линзу окуляра микроскопа 7, различаются наблюдателем в виде светящихся точек в темном поле.

Метод наблюдения в поляризованном свете (в проходящем и отраженном) применяется для исследования анизотропных объектов, таких как минералы, руды, зерна в шлифах сплавов, некоторые животные и растительные ткани и клетки. Оптическая анизотропия – это различие оптических свойств среды в зависимости от направления распространения в ней оптического излучения (света) и его поляризации . Поляризация света – физическая характеристика оптического излучения, описывающая поперечную анизотропию световых волн , то есть неэквивалентность различных направлений в плоскости, перпендикулярной световому лучу. Поперечность электромагнитных волн лишает волну осевой симметрии относительно направления распространения из-за наличия выделенных направлений (вектора Е – напряженности электрического поля и вектора Н – напряженности магнитного поля) в плоскости, перпендикулярной направлению распространения. Поскольку векторы Е и Н электромагнитной волны перпендикулярны друг другу, для полного описания состояния поляризации светового пучка требуется знание поведения лишь одного из них. Обычно для этой цели выбирается вектор Е. Свет, испускаемый каким-либо отдельно взятым элементарным излучателем (атомом, молекулой), в каждом акте излучения всегда поляризован. Но макроскопические источники света состоят из огромного числа таких частиц-излучателей; пространственные ориентации векторов Е и моменты актов испускания света отдельными частицами в большинстве случаев распределены хаотически. Поэтому в общем излучении направление Е в каждый момент времени непредсказуемо. Подобное излучение называется неполяризованным , или естественным светом. Свет называется полностью поляризованным , если две взаимно перпендикулярные компоненты (проекции) вектора Е светового пучка совершают колебания с постоянной во времени разностью фаз. Обычно состояние поляризации света изображается с помощью эллипса поляризации – проекции траектории конца вектора Е на плоскость, перпендикулярную лучу (рис. 6)

Оптическая анизотропия проявляется в двойном лучепреломлении, изменении поляризации света и во вращении плоскости поляризации, происходящем в оптически активных веществах. Естественная оптическая анизотропия кристаллов обусловлена неодинаковостью по различным направлениям поля сил, связывающих атомы решетки. Естественная оптическая активность веществ, которые проявляют ее в любом агрегатном состоянии, связана с асимметрией строения отдельных молекул таких веществ и обусловленным ею различием во взаимодействии этих молекул с излучением различных поляризаций, а также с особенностями возбужденных состояний электронов и «ионных остовов» в оптически активных кристаллах. Наведенная (искусственная) оптическая анизотропия возникает в средах, от природы оптически изотропных под действием внешних полей, выделяющих в таких средах определенное направление. Это может быть электрическое поле, магнитное поле, поле упругих сил, а также поле сил в потоке жидкости. В методе наблюдения в поляризованном свете с помощью анализаторов и компенсаторов, которые включены в оптическую систему, изучается изменение поляризации света, прошедшего через объект.

Метод фазового контраста служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани. Метод основан на том, что даже при малом различии показателей преломления объекта и среды световая волна, прошедшая сквозь них, претерпевает разные изменения по фазе и приобретает фазовый рельеф . Эти фазовые изменения преобразуются в изменения яркости («амплитудный рельеф») с помощью специальной фазовой пластинки (фазового кольца), расположенной вблизи заднего фокуса объектива. Лучи, прошедшие через объект, полностью проходят через фазовое кольцо, которое изменяет их фазу на /4. В то же время лучи, рассеянные в объекте (отклоненные), не попадают в фазовое кольцо и не получают дополнительного сдвига фазы. С учетом фазового сдвига в объекте разность фаз между лучами отклоненными и неотклоненными оказывается близкой к 0 или /2, и в результате интерференции света в плоскости изображения объекта они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры объекта, в котором распределение яркостей воспроизводит указанный выше фазовый рельеф.

Метод интерференционного контраста состоит в том, что каждый луч, входящий в микроскоп, раздваивается: один проходит сквозь наблюдаемую частицу, а второй – мимо нее. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Результат интерференции определяется разностью хода лучей d , которая выражается формулой: d=N =(n 0 -n m )d 0 , где n 0 , n m – показатели преломления соответственно частицы и окружающей среды, d 0 – толщина частицы, N – порядок интерференции. Принципиальная схема одного из способов осуществления интерференционного контраста показана на рис. 4. Конденсор 1 и объектив 4 снабжены двоякопреломляющими пластинками (помечены на рисунке диагональными стрелками), первая из которых расщепляет исходный световой луч на два луча, а вторая воссоединяет их. Один из лучей, проходя через объект 3, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом); величина этого запаздывания измеряется компенсатором 5. Метод интерференционного контраста в некоторых отношениях сходен с методом фазового контраста – оба они основаны на интерференции лучей, прошедших через микрочастицу и миновавших ее. Отличие интерференционного метода от метода фазового контраста заключается главным образом в возможности с высокой точностью (до /300) измерять разности хода, вносимые микрообъектом, используя компенсаторы. На основании этих измерений можно производить количественные расчеты, например, общей массы и концентрации сухого вещества в клетках биологических объектов.

Метод исследования в свете люминесценции основан на том, что под микроскопом изучается зелено-оранжевое свечение объекта, возникающее при его освещении сине-фиолетовым или УФ светом. Для этой цели перед конденсором и после объектива микроскопа вводят соответствующие светофильтры. Первый из них пропускает от источника-осветителя только излучение, вызывающее люминесценцию объекта, второй (после объектива) пропускает к глазу наблюдателя только свет люминесценции. Метод применяется в микрохимическом анализе, дефектоскопии.

Метод наблюдения в УФ лучах позволяет увеличить предельную разрешающую способность микроскопа, пропорциональную 1/. Этот метод расширяет возможности микроскопических исследований также за счет того, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ излучение определенных длин волн и, следовательно, легко различимы в УФ изображениях. Изображения в УФ микроскопии регистрируют либо фотографированием, либо с помощью электронно-оптического преобразователя или люминесцирующего экрана.

Метод наблюдения в ИК лучах также требует преобразования невидимого для глаза изображения в видимое путем его фотографирования или с помощью электронно-оптического преобразователя. ИК микроскопия позволяет изучать внутреннюю структуру объектов, непрозрачных в видимом свете, например, темных стекол, некоторых кристаллов, минералов.

Основные узлы оптического микроскопа . Кроме указанных выше оптических узлов (например, объектив, окуляр), в оптическом микроскопе имеются также штатив или корпус, предметный столик для крепления исследуемого объекта, механизмы для грубой и точной фокусировки, устройство для крепления объективов и тубус для установки окуляров. Применение того или иного типа конденсора (светлопольные, темнопольные и т. д.) зависит от выбора необходимого метода наблюдения. Объективы в большинстве современных оптических микроскопов съемные. Объективы различаются:

а) по спектральным характеристикам – на объективы для видимой области спектра и для УФ и ИК микроскопии (линзовые и зеркально-линзовые);

б) по длине тубуса, на которую они рассчитаны (в зависимости от конструкции микроскопа);

в) по среде между объективом и объектом – на сухие и иммерсионные;

г) по методу наблюдения – на обычные, фазово-контрастные и др.

Тип применяемого окуляра при данном методе наблюдения определяется выбором объектива оптического микроскопа. Приспособления к оптическим микроскопам позволяют улучшить условия наблюдения и расширить возможности исследований, осуществлять разные виды освещения объектов, определять размеры объектов, фотографировать объекты через микроскоп, и т. п. Типы микроскопов определяются либо областью применения, либо методом наблюдения. Например, биологические микроскопы предназначены для исследований в микробиологии, гистологии, цитологии, ботанике, медицине, а также для наблюдения прозрачных объектов в физике, химии и т. д. Металлографические микроскопы предназначены для исследования микроструктур металлов и сплавов. Снятые с помощью такого микроскопа микрофотографии нетравленого шлифа металла представлены на рис. 5 (а – в светлом поле, б – с фазово-контрастным устройством). Поляризационные микроскопы снабжены дополнительно поляризационными устройствами и предназначены главным образом для исследования шлифов минералов и руд. Стереомикроскопы служат для получения объемных изображений наблюдаемых предметов. Измерительные микроскопы предназначены для различных точных измерений в машиностроении. Кроме этих групп микроскопов имеются специализированные оптические микроскопы , например: микроустановка для киносъемки быстрых и медленных процессов (движение микроорганизмов, процессы деления клеток, роста кристаллов и т. п.); высокотемпературные микроскопы для исследования объектов, нагретых до 2000°С; хирургические микроскопы слабого увеличения , применяемые при операциях. Весьма сложными приборами являются микроспектрофотометрические установки для определения спектров поглощения объектов, телевизионные анализаторы микроизображений и др.

Как уже было сказано, независимо от вида используемых линз и способа их соединения, разрешающая способность оптических микроскопов ограничивается основным правилом оптической техники, сформулированным еще в 1873г. (так называемый дифракционный предел разрешения Рэлея), в соответствии с которым минимальные размеры различаемых деталей рассматриваемого объекта не могут быть меньше, чем половина длины волны света, используемого для освещения. Поскольку самые короткие длины волн диапазона соответствуют примерно 400 нм, разрешающая способность оптических микроскопов принципиально ограничена половиной этой величины, то есть составляет около 200 нм. Единственным выходом из возникшей ситуации стало создание приборов, в которых используются волновые излучения с меньшей длиной волны, то есть излучения не световой природы.

Электронная микроскопия

В квантовой механике электрон может рассматриваться в качестве волны, на которую, в свою очередь, можно воздействовать электрическими или магнитными линзами (в полной аналогии с законами привычной геометрической оптики). На этом основан принцип действия электронных микроскопов, позволяющих значительно расширить возможности исследования вещества на микроскопическом уровне (за счет увеличения разрешающей способности на порядки). В электронном микроскопе вместо света используются сами электроны, представляющие собой в данной ситуации излучение со значительно более короткой длиной волны (примерно в 50 000 раз меньше световой). В таких устройствах вместо стеклянных линз, естественно, применяются электронные линзы (то есть поля соответствующей конфигурации). Электронные пучки не могут распространяться без рассеяния даже в газовых средах, поэтому внутри электронного микроскопа, вдоль всей траектории электронов, должен поддерживаться высокий вакуум (давление до 10 –6 мм.рт.ст. или 10 –4 Па). Электронные микроскопы разделяются на два больших класса по методике применения: просвечивающие электронные микроскопы (ПЭМ) и сканирующие (СЭМ) или по-другому растровые (РЭМ). Основное различие между ними заключается в том, что в ПЭМ электронный пучок пропускается через очень тонкие слои исследуемого вещества, с толщиной менее 1 мкм (как бы «просвечивая» эти слои насквозь), а в сканирующих микроскопах электронный пучок последовательно отражается от маленьких участков поверхности (структура поверхности и ее характерные особенности могут быть определены при этом регистрацией отраженных электронов или вторичных электронов, возникающих при взаимодействии пучка с поверхностью).

Просвечивающий электронный микроскоп (ПЭМ) . Конструкция ПЭМ похожа на схему обычного оптического микроскопа (рис. 1), только вместо лучей света используются электроны (то есть соответствующие им волны). Первое устройство такого типа было создано в 1932г. немецкими учеными М. Кноллом и Е. Руска. В таком микроскопе источник света заменен так называемой электронной пушкой (источником электронов). Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Металлический катод 2 испускает электроны, которые собираются в пучок с помощью фокусирующего электрода 3 и получают энергию под действием сильного электрического поля в пространстве между катодом и анодом 1. Для создания этого поля к электродам прикладывается высокое напряжение – 100 кВ и более. Выходящий из электронной пушки пучок электронов с помощью линзы-конденсора 4 направляется на рассматриваемый объект, который рассеивает, отражает и поглощает электроны. Они фокусируются линзой-объективом 5, которая создает промежуточное изображение объекта 7. Проекционная линза 6 снова собирает электроны и создает второе, еще более увеличенное изображение объекта на люминесцентном экране, на котором под действием электронов создается светящееся изображение объекта. С помощью помещенной под экраном фотопластины получают фотографию рассматриваемого объекта.

Микроскоп Гука

Реплика однолинзового микроскопа Левенгука

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янсен и его сын Захарий Янсен изобрели первый микроскоп в , но это было заявление самого Захария Янсена в середине XVII века . Дата, конечно, не точна, так как оказалось, что Захария родился около г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей . Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в г. Галилей представил свой микроскоп публике в Академии деи Линчеи , основанной Федерико Чези в г. Изображение трёх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. «Stephen Jay Gould, The Lying stones of Marrakech, 2000»). Десятью годами позже Галилея Корнелиус Дреббель изобретает новый тип микроскопа, с двумя выпуклыми линзами. Кристиан Гюйгенс , другой голландец, изобрел простую двухлинзовую систему окуляров в конце 1600-х , которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и опробовал его на пробке. В результате этого исследования появилось название «клетки». Антон Ван Левенгук ( -) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов , а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

Недавние достижения

В группе немецкого учёного Штефана Хелля (Stefan Hell) из Института Биофизической Химии научного сообщества Макса Планка (Гёттинген) в сотрудничестве с аргентинским учёным Мариано Босси (Mariano Bossi) в 2006 году был разработан оптический микроскоп под названием Наноскоп, позволяющий преодолевать барьер Аббе и наблюдать объекты размером около 10 нм (а на 2010 год и ещё меньше), оставаясь в диапазоне видимого излучения, получая при этом высококачественные трёхмерные изображения объектов, ранее недоступных для обычной световой и конфокальной микроскопии.

Применение

Устройство микроскопа

Оптическая система микроскопа состоит из основных элементов - объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик. Увеличение оптического микроскопа без дополнительных линз между объективом и окуляром равно произведению их увеличений .

В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.

В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Объективы

Объектив микроскопа - микрообъектив представляет собой сложную оптическую систему, образующую увеличенное изображение объекта, и является основной и наиболее ответственной частью микроскопа. Микрообъектив создает действительное перевернутое изображение, которое рассматривается через окуляр

Иммерсия

Иммерсия в микроскопии - это введение между объективом микроскопа и рассматриваемым в нём предметом жидкости для усиления яркости и расширения пределов увеличения изображения .

Окуляры

Окуляры микроскопа Альтами 136

Окуля́р - обращённая к глазу часть микроскопа, предназначаемая для рассматривания с некоторым увеличением оптического изображения, даваемого объективом микроскопа.

Система освещения препарата

Система освещения с конденсором

В первых микроскопах исследователи вынуждены были пользоваться естественными источниками света. Для улучшения освещённости стали использовать зеркало, а затем - и вогнутое зеркало, с помощью которого на препарат направляли лучи солнца или лампы. В современных микроскопах освещение регулируют с помощью конденсора.

Конденсор

Конденсор тёмного поля

Конденсоры темного поля применяются в темнопольной оптической микроскопии . Лучи света направляются конденсором таким образом, что они не попадают напрямую во входное отверстие объектива. Изображение формируется светом, рассеивающимся на оптических неоднородностях образца. В ряде случаев метод позволяет исследовать структуру прозрачных объектов без их окрашивания. Разработан ряд конструкций конденсоров темного поля, имеющих линзовую или зеркально-линзовую оптическую схему.

Предметный столик

Предметный столик выполняет роль поверхности, на которой размещают микроскопический препарат. В разных конструкциях микроскопов столик может обеспечить координатное движение препарата в поле зрения объектива, по вертикали и горизонтали, или поворот препарата на заданный угол.

Вспомогательные приспособления

Предметные и покровные стёкла

Первые наблюдения в микроскоп производились непосредственно над каким-либо объектом (птичье перо, снежинки, кристаллы и т. п.). Для удобства наблюдения в проходящем свете, препарат стали размещать на стеклянной пластинке (предметное стекло). Позже препарат стали закреплять тонким покровным стеклом, что позволило создавать коллекции образцов, например, гистологические коллекции. Для исследования методом висячей капли используются предметные стекла с лункой - камеры Ранвье .

Счетные камеры

Для количественного учета клеток, взвешенных в какой-либо жидкости, используют счетные камеры - предметные стекла особой конструкции. В медицине для учета форменных элементов крови применяется камера Горяева .

Классификация

Рабочие лабораторные микроскопы

Бинокулярные микроскопы (микроскопы с бинокулярной насадкой)

Бинокулярный оптические микроскопы позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие. Общее увеличение (объектив*окуляр) оптических микроскопов с бинокулярной насадкой обычно больше, чем у соответствующих монокулярных микроскопов.

Стереомикроскопы

Исследование с помощью компьютеризованного бинокулярного микроскопа

Учебный стереомикроскоп Альтами ПС II

Оптическая схема современного стереомикроскопа.
A - Объектив B - Галилеевы системы (поворачивающиеся объективы ) C - Регулятор увеличения D - Внутренний объектив E - Призма F - Оборачивающая система линз G - Окулярная сетка H - Окуляр

Стереомикроскопы, как и другие виды оптических микроскопов, позволяют работать как в проходящем, так и в отражённом свете . Обычно они имеют сменные окуляры бинокулярной насадки и один несменный объектив (есть и модели со сменными объективами). Большинство стереомикроскопов дает существенно меньшее увеличение, чем современные оптические микроскопы, однако имеет существенно большее фокусное расстояние, что позволяет рассматривать крупные объекты. Кроме того, в отличие от обычных оптических микроскопов, которые дают, как правило, инвертированное изображение, оптическая система стереомикроскопов не «переворачивает» изображение. Это позволяет широко использовать их для препарирования микроскопических объектов вручную или с использованием микроманипуляторов.

Наиболее широко бинокуляры используются для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как горные породы, металлы, ткани; в микрохирургии и пр.

Металлографические микроскопы

Специфика металлографического исследования заключается в необходимости наблюдать структуру поверхности непрозрачных тел. Поэтому микроскоп построен по схеме отраженного света, где имеется специальный осветитель установленный со стороны объектива. Система призм и зеркал направляет свет на объект, далее свет отражается от не прозрачного объекта и направляется обратно в объектив. "..

Современные прямые металлургические микроскопы характеризуются большим расстоянием между поверхностью столика и объективами и большим вертикальным ходом столика, что позволяет работать с крупными образцами. Максимальное расстояние может достигать десятки сантиметров . Но обычно в материаловедении используются инвертированные микроскопы, как не имеющие ограничения на размер образца (только на вес) и не требующие параллельности опорной и рабочей граней образца (в этом случае они совпадают).

Поляризационные микроскопы

В основе принципа действия поляризационных микроскопов лежит получение изображения исследуемого объекта при его облучении поляризованными лучами, которые в свою очередь должны быть получены из обычного света с помощью специального прибора - поляризатора. В сущности при прохождении поляризованного света через вещество либо отраженное от него меняет плоскость поляризации света в результате чего на втором поляризационном фильтре выявляется в виде излишнего затемнения. Либо дают специфичные реакции как двойное лучепреломление в жирах.

Микроскоп как оптическая система

Немного о биологических микроскопах

Биологические микроскопы - это, пожалуй, самый распространенный тип оптических приборов для изучения микромира. Благодаря своей универсальности и простоте использования, этот тип микроскопов нашел широкое применение в ботанике, гистологии , цитологии , микробиологии и медицине. Достаточно активно используют биологические микроскопы и в отраслях, особо не связанных с биологией: с их помощью проводят изучение прозрачных и полупрозрачных объектов в химии, физике, а также во многих других сферах деятельности человека, где требуется проведение исследований при большом увеличении.
Современные производители предлагают широкий ассортимент моделей биологических микроскопов, в конструкции которых используются разнообразные дополнительные принадлежности, значительно расширяющие их функциональные возможности:

    различные виды источников освещения; конденсоры, работающие по принципам светлого и темного полей; наборы для исследований по методам фазового-контраста и поляризации; микрометры для проведения измерений с помощью окуляров со шкалой, или с помощью специального программного обеспечения ; адаптеры для подключения цифровых камер и фотоаппаратов; различные светофильтры для улучшения контраста видимого изображения объекта исследования.

Биологические микроскопы или иначе их называют лабораторные микроскопы, использующиеся в исследовательской деятельности, оснащаются наборами объективов, различающихся разно степенью ахроматической коррекции (ахроматы, планахроматы, апохроматы и т. п.). К каждому набору объективов прилагается свой комплект окуляров, с помощью которых изображение формируемое объективами преобразуется в понятный для восприятия глазами свет. С помощью специальной тринокулярной насадки можно проводить как визуальное наблюдение, так и выводить его на монитор персонального компьютера, а также фотографировать полученное изображение.
Изображения, поступающие с цифровых лабораторных микроскопов, а также с лабораторных микроскопов с тринокулярной насадкой, отличаются яркостью и четкостью, качественной цветопередачей.
Лабораторные микроскопы интересны чаще всего людям, занимающимся научными исследованиями, но также могут быть используемы для учебных целей в школах и институтах.

Основные части микроскопа. Устройство оптических микроскопов

Видео :

Микроскоп. Microscope 1

http://youtu. be/2CjnKhXu4ig

http://youtu. be/Aci8yAYrq0U

В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

Устройство микроскопа делится на 3 функциональные части:

1. Осветительная часть
Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом в инвертированных.

Осветительная часть конструкции микроскопа включает (лампа и электрический блок питания) и оптико-механическую систему (коллектор , конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть
Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

3. Визуализирующая часть
Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).

Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).

Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

Современный микроскоп состоит из следующих конструктивно-технологических частей:

    оптической; механической; электрической.

Механическая часть микроскопа

Устройство микроскопа включается себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель.

Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

Разновидности оснований микроскопа:

1. основание с осветительным зеркалом;

2. так называемое «критическое» или упрощенное освещение;

3. освещение по Келеру.

1. узел смены объективов, имеющий следующие варианты исполнения - револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;

2. фокусировочный механизм грубой и точной настройки микроскопа на резкость - механизм фокусировочного перемещения объективов или столиков;

3. узел крепления сменных предметных столиков;

4. узел крепления фокусировочного и центрировочного перемещения конденсора;

5. узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

Чисто механическим узлом микроскопа является предметный столик, предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

Оптика микроскопа (оптическая часть)

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа - создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

Объективы микроскопа

Представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроска. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

Классификация объективов

Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

По принципу расчетного качества изображения объективы могут быть:

    ахроматическими; апохроматическими; объективами плоского поля (план).

Ахроматические объективы.

Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично - сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

Апохроматические объективы.

Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полуапохроматы или микрофлюары.

Современные объективы, обладающие промежуточным качеством изображения.

Планобъективы.

В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

По параметрическим признакам объективы делятся следующим образом:

1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);

2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);

3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);

4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние - это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;

5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);

6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.

Высота - расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

По конструктивно-технологическим признакам существует следующее разделение:

1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;

2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);

3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной - панкратической - смене увеличения) и без нее.

По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

1. объективы, работающие с покровным и без покровного стекла;

2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент - полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);

3. иммерсионные и безыммерсионные объективы.

Иммерсия (от лат. immersio - погружение) - жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;

2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного - доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние - 1,5–2,5 мм при свободном рабочем расстоянии 0,1–0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

Маркировка объективов.

Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

1. увеличение («х»-крат, раз): 8х, 40х, 90х;

2. числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;

3. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый - Ф (Рп2 - цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный - П (Pol), люминесцентный - Л (L), фазово-люминесцентный - ФЛ (PhL), ЭПИ (Epi, HD) - эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст - ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;

4. маркировка типа оптической коррекции: апохромат - АПО (АРО), планахромат - План (PL, Plan), планапохромат - ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан - СХ - стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) - СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной - ближайшей к глазу наблюдателя - и полевой - ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

Окуляры классифицируются по тем же группам признаков, что и объективы:

1. окуляры компенсационного (К - компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;

2. окуляры обычные и плоского поля;

3. окуляры широкоугольные (с окулярным числом - произведение увеличения окуляра на его линейное поле - более 180); сверхширокоугольные (с окулярным числом более 225);

4. окуляры с вынесенным зрачком для работы в очках и без;

5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;

6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

Осветительная система

Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
Осветительная система микроскопа проходящего света состоит из двух частей - коллектора и конденсора.

Коллектор.
При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

Конденсор.
Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

    косое освещение (диафрагмирование от края к центру и смещение осветительной апертурной диафрагмы относительно оптической оси микроскопа); темное поле (максимальное диафрагмирование от центра к краю осветительной апертуры); фазовый контраст (кольцевое освещение объекта, при этом изображение светового кольца вписывается в фазовое кольцо объектива).

Классификация конденсоров близка по группам признаков к объективам:

1. конденсоры по качеству изображения и типу оптической коррекции делятся на неахроматические, ахроматические, апланатические и ахроматические-апланатические;

2. конденсоры малой числовой апертуры (до 0,30), средней числовой апертуры (до 0,75), большой числовой апертуры (свыше 0,75);

3. конденсоры с обычным, большим и сверхбольшим рабочим расстоянием;

4. обычные и специальные конденсоры для различных методов исследования и контрастирования;

5. конструкция конденсора - единая, с откидным элементом (фронтальным компонентом или линзой большого поля), со свинчивающимся фронтальным элементом.

Конденсор Аббе - не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной - двояковыпуклой, другой - плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

Апланатический конденсор - конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза - плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

Ахроматический конденсор - конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

Конденсор темного поля - конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

Маркировка конденсора.
На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).